Q- 240 g mass on a 0.8 m long string is pulled 8.4° to one side and released. How long does it take for the pendulum to reach 6.0° on the opposite side?

For small angles the motion of a pendulum bob is simple harmonic with time period T given by

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

Here L is the length of the pendulum.
The angular frequency for this motion is given by

$$
\omega=\frac{2 \pi}{T}=\sqrt{\frac{g}{L}}=3.5 \mathrm{rad} / \mathrm{s}=200.5^{\circ} / \mathrm{s}
$$

The displacement from equilibrium position as a function of time is given by

$$
x=A \sin (\omega t+\phi)
$$

As initially, at $t=0$, the bob is released from extreme position $x=A$, the initial phase ϕ is 90° and hence the equation can be written as

$$
\begin{align*}
& x=A \sin \left(\omega t+90^{\circ}\right) \\
& x=A \cos (\omega t) \tag{1}
\end{align*}
$$

Now here $A=L \sin 8.4^{0}=0.8^{*} 0.146=0.117 \mathrm{~m}$
And $\quad x=-L \sin 6.0^{\circ}=-0.8^{*} 0.1045=-0.084 m$
Substituting in equation 1 we get

- $0.084=0.117 \cos [(3.5 \mathrm{rad} / \mathrm{s}) * \mathrm{t}]$

Or $\quad \cos [(3.5 \mathrm{rad} / \mathrm{s}) * \mathrm{t}]=-0.084 / 0.117=-0.718$
Gives $3.5 \mathrm{rad} / \mathrm{s}^{*} \mathrm{t}=\left[135.88^{\circ}\right]=2.37 \mathrm{rad}$
Gives $\mathrm{t}=2.37 / 3.5=0.677 \mathrm{~s}$

