Q- A wave on a string is described by $D(x, t)=(3.0 \mathrm{~cm}) \sin [2 \pi(1+x /(2.1 \mathrm{~m})-t /(0.2 \mathrm{~s}))]$. (a) In what direction is this wave traveling?

The equation can be written as

$$
\begin{align*}
D(x, t) & =(3.0 \mathrm{~cm}) \sin \left[2 \pi\left(1+\frac{x}{2.1 m}-\frac{t}{0.2 s}\right)\right] \tag{1}\\
\text { Or } \quad D(x, t) & =(3.0 \mathrm{~cm}) \sin \left[\left(\frac{2 \pi}{2.1 m}\right) x-\left(\frac{2 \pi}{0.2 s}\right) t+2 \pi\right]
\end{align*}
$$

Now as we know that at a moment the phase angle decrease in the direction of wave motion and here if t is constant with x the phase angle is increasing this says us that the wave is traveling in negative \times direction.
(b) What are the wave speed, the frequency, and the wave number?

Comparing above equation with standard wave equation we get

$$
\mathrm{K}=\frac{2 \pi}{\lambda}=\frac{2 \pi}{2.1 m} \quad \text { gives wavelength } \lambda=2.1 \mathrm{~m}
$$

And $\quad \omega=\frac{2 \pi}{T}=\frac{2 \pi}{0.2 s} \quad$ gives $\mathrm{T}=0.2 \mathrm{~s}$
Hence the wave speed

$$
\mathrm{c}=\frac{\lambda}{T}=\frac{2.1}{0.2}=10.5 \mathrm{~m} / \mathrm{s}
$$

Frequency

$$
n=\frac{1}{T}=\frac{1}{0.2}=5 \mathrm{~Hz}
$$

and the wave number

$$
\mathrm{K}=\frac{2 \pi}{\lambda}=\frac{2 \pi}{2.1 m}=2.992 \mathrm{~m}^{-1}
$$

(c) At $t=0.50 \mathrm{~s}$, what is the displacement of the string at $x=0.20 \mathrm{~m}$?

Substituting the values for x and t in equation (1) we get

$$
D(x, t)=(3.0 \mathrm{~cm}) \sin \left[2 \pi\left(1+\frac{0.20}{2.1 m}-\frac{0.50}{0.2 s}\right)\right]
$$

Or

$$
D(x, t)=(3.0 \mathrm{~cm}) \sin [-2.81 \pi]=(3.0 \mathrm{~cm}) \sin \left[-506^{\circ}\right]=3.0 *(-.563)=-1.69 \mathrm{~cm}
$$

