Q- A distant galaxy is simultaneously rotating and receding from the earth. As the drawing shows, the galactic center is receding from the earth at a relative speed of $u_{G}=1.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Relative to the center, the tangential speed is $v_{T}=0.3 \times 10^{6} \mathrm{~m} / \mathrm{s}$ for locations A and B, which are equidistant from the center. When the frequencies of the light coming from regions A and B are measured on earth, they are not the same and each is different than the emitted frequency of $6.400 \times 10^{14} \mathrm{~Hz}$. Find the measured frequency for the light from each of the following.
(a) region A
(b) region B

The frequency of light from a moving source is not as that of the actual one but apparent and given by Doppler's formula for approaching source

$$
n^{\prime}=n\left(\frac{c}{c-v}\right)
$$

Here c is the speed of light and v is the velocity of approach of the source
(a) For point A which is moving away with resultant velocity $\mathrm{u}-\mathrm{v}$ we have

$$
n_{1}=n\left(\frac{c}{c+(u-v)}\right)=6.4 * 10^{14}\left(\frac{3 * 10^{8}}{3 * 10^{8}+(1.8-0.3) * 10^{6}}\right)=6.3682 * 10^{14} \mathrm{~Hz}
$$

(b) And as the region B is receding away with a velocity $v+u$ we have

$$
n_{2}=n\left(\frac{c}{c+(u+v)}\right)=6.4 * 10^{14}\left(\frac{3 * 10^{8}}{3 * 10^{8}+(1.8+0.3) * 10^{6}}\right)=6.3555 * 10^{14} \mathrm{~Hz}
$$

