Q- A patient is to be given a blood transfusion. The blood is to flow through a wide tube from a raised bottle to a needle inserted in the vein. The inside diameter of the 3.8 cm long needle is 0.4 mm and the required flow rate is $4 \mathrm{~cm}^{3}$ of blood per minute. How high should the bottle be placed above the needle? Assume the blood pressure is 20 torr above atmospheric pressure. (Density of blood $=1.05 * 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and its viscosity is $4^{*} 10^{-3}$ Pa.s)

1 torr $=1 \mathrm{~atm} / 760=1.01 * 10^{5} / 760=132.9 \mathrm{~Pa}$
Or $\quad \Delta \mathrm{P}=20$ torr $=2658 \mathrm{~Pa}$
Now if the height of the bottle from the needle is h then pressure of the blood from the bottle is given by

$$
P_{1}=P_{0}+h \rho g
$$

Pressure of blood (other end of the needle) will be

$$
P_{2}=P_{0}+P
$$

Hence the pressure difference across the needle will be

$$
\begin{aligned}
& P_{1}-P_{2}
\end{aligned}=P_{0}+h \rho g-P_{0}-P 子 \text { Or } \quad P_{1}-P_{2}=h \rho g-P
$$

Now the volume flow rate of a fluid through a tube of radius r and length L is given by

$$
\begin{aligned}
\frac{d Q}{d t} & =\frac{\pi\left(P_{1}-P_{2}\right) r^{4}}{8 \eta L} \\
\text { Or } \quad \frac{d Q}{d t} & =\frac{\pi(h \rho g-P) r^{4}}{8 \eta L}
\end{aligned}
$$

Substituting the values in SI units we get

$$
\begin{aligned}
& \quad \frac{4.0 * 10^{-6}}{60}=\frac{3.14 *\left(h * 1.05 * 10^{3} * 9.8-2658\right) *\left(\frac{0.4 * 10^{-3}}{2}\right)^{4}}{8 * 4 * 10^{-3} * 0.038} \\
& \text { Or } \quad \frac{4.0 * 10^{-6}}{60}=\frac{3.14 *(10290 h-2658) * 1.6 * 10^{-15}}{1.22 * 10^{-3}} \\
& \text { Or } \quad(10290 h-2658)=\frac{4.0 * 10^{-6} * 1.22 * 10^{-3}}{60 * 3.14 * 1.6 * 10^{-15}} \\
& \text { Or } \quad(10290 h-2565)=16189 \\
& \text { Or } \quad h=\frac{16189+2658}{10290}=\mathbf{1 . 8 3} \mathbf{~ m}
\end{aligned}
$$

