Q- A hollow cylinder of radius a and length $L$, open at its ends carries a uniform surface charge density $\sigma$. Use the formula for electric field due to a thin uniformly charged ring; find the expression for the electric field at a point $P$ on the axis of the cylinder at a distance $b$ from its nearest end.

Consider an infinitely thin ring of width dr at a distance $r$ from the left edge of the cylinder. The surface area of this ring element will be $2 \pi \mathrm{a}$ *dr

As the charge per unit area on the cylinder is $\sigma$, the charge on the ring is given by

$$
\begin{equation*}
\mathrm{dQ}=2 \pi \mathrm{a} * \mathrm{dr}^{*} \sigma \tag{1}
\end{equation*}
$$

The distance of point $P$ on the axis of this ring element from the center of the ring will be

$$
\begin{equation*}
x=L+b-r \tag{2}
\end{equation*}
$$



The field due to a uniformly charged ring of radius a at a distance x from its center on its axis is given by

$$
E=\frac{1}{4 \pi \epsilon_{0}} \frac{Q x}{\left(x^{2}+a^{2}\right)^{3 / 2}}
$$

Substituting the values for the ring element, the field due to this element dE at point P is given by

$$
d E=\frac{1}{4 \pi \epsilon_{0}} \frac{d Q x}{\left(x^{2}+a^{2}\right)^{3 / 2}}
$$

Or $\quad d E=\frac{1}{4 \pi \epsilon_{0}} \frac{2 \pi a * d r * \sigma *(L+b-r)}{\left[(L+b-r)^{2}+a^{2}\right]^{3 / 2}}$
Or $\quad d E=\frac{2 \pi a \sigma}{4 \pi \epsilon_{0}} \frac{(L+b-r) d r}{\left[(L+b-r)^{2}+a^{2}\right]^{3 / 2}}$

Thus the field at P due to the whole cylinder is given by adding the fields due to all such ring elements i.e. by integrating the field due to this ring element as

$$
E=\int d E=\frac{2 \pi a \sigma}{4 \pi \epsilon_{0}} \int_{0}^{L} \frac{(L+b-r) d r}{\left[(L+b-r)^{2}+a^{2}\right]^{3 / 2}}
$$

Now put $\quad(L+b-r)^{2}+a^{2}=u^{2}$
Differentiating we get $\quad 2(L+b-r)(-d r)=2 u * d u$
When $\mathrm{r}=0, \mathrm{u}=\mathrm{u}_{1}=\sqrt{(L+b)^{2}+a^{2}}$
And when $\mathrm{r}=\mathrm{L}, \mathrm{u}=\mathrm{u}_{2}=\sqrt{b^{2}+a^{2}}$
Substituting these, the integral reduces to

$$
E=\frac{2 \pi a \sigma}{4 \pi \epsilon_{0}} \int_{u_{1}}^{u_{2}} \frac{-u * d u}{\left(u^{2}\right)^{3 / 2}}
$$

Or $\quad E=-\frac{2 \pi a \sigma}{4 \pi \epsilon_{0}} \int_{u_{1}}^{u_{2}} \frac{d u}{u^{2}}$
Or $\quad E=-\frac{2 \pi a \sigma}{4 \pi \epsilon_{0}} \int_{u_{1}}^{u_{2}} u^{-2} d u$
Or $\quad E=-\frac{2 \pi a \sigma}{4 \pi \epsilon_{0}}\left(-\frac{1}{u}\right)_{u_{1}}^{u_{2}}$
Or $\quad E=\frac{2 \pi a \sigma}{4 \pi \epsilon_{0}}\left(\frac{1}{u_{2}}-\frac{1}{u_{1}}\right)$
Substituting values of $u_{1}$ and $u_{2}$ from above we get the expression for the field at $P$ due to the cylinder as

$$
\begin{aligned}
E & =\frac{2 \pi a \sigma}{4 \pi \epsilon_{0}}\left(\frac{1}{\sqrt{b^{2}+a^{2}}}-\frac{1}{\sqrt{(l+b)^{2}+a^{2}}}\right) \\
\text { Or } \quad E & =K * 2 \pi a \sigma\left(\frac{1}{\sqrt{b^{2}+a^{2}}}-\frac{1}{\sqrt{(l+b)^{2}+a^{2}}}\right)
\end{aligned}
$$

This is the required expression.

