Q- Find the equivalent capacitance between points $a$ and $b$ in the combination of capacitors shown in Figure. $C_{1}=2.0 \mu \mathrm{~F}$ and $C_{2}=3.0 \mu \mathrm{~F}$.


Looking minutely both terminals of $\mathrm{C}_{1}$ and $6.0 \mu \mathrm{~F}$ capacitors are connected directly between the a and b . Similarly the series connection of $5.0 \mu \mathrm{~F}$ and $\mathrm{C}_{2}$ is also connected directly to a and $b$. Thus the circuit is having $C_{1}, 6.0 \mu \mathrm{~F}$ capacitors and the series combination of $5.0 \mu \mathrm{~F}$ and $C_{2}$ are in parallel as in figure. The equivalent capacitance of the series combination of $5.0 \mu \mathrm{~F}$ and $\mathrm{C}_{2}$ is equal to (units are in $\mu \mathrm{F}$ )

$$
\frac{C_{2} * 5.0}{C_{2}+5.0}
$$

Thus the equivalent capacitance of the circuit is given by

$$
C=C_{1}+6.0+\frac{C_{2} * 5.0}{C_{2}+5.0}
$$



Or $\quad C=2.0+6.0+\frac{3.0 * 5.0}{3.0+5.0}=9.875 \mu F$

