Q- A small block of mass 80 g is oscillating on a spring. The equation of motion for its position x as a function of time is given by

$$
x(t)=(5.0 \mathrm{~cm}) \cos (10 t+\pi / 4)
$$

(a) what is the amplitude of the oscillation?
(b) What is the period of oscillation?
(c) What is the position of the block at $t=5 \mathrm{sec}$?
(d) What is the velocity of the block at $\mathrm{t}=5 \mathrm{sec}$?
(e) What is the maximum velocity of the block?
(f) What is the maximum potential energy of the system?
(g) What is the acceleration of the block at $t=5 \mathrm{sec}$?

The equation of motion is given by

$$
x(t)=(5.0 \mathrm{~cm}) \cos (10 t+\pi / 4)
$$

Comparing it with standard equation of simple harmonic motion

$$
x(t)=A \cos \left(\omega t+\emptyset_{0}\right)
$$

(a) The amplitude
$\mathrm{A}=5.0 \mathrm{~cm}=0.050 \mathrm{~m}$
(b) The angular frequency
$\omega=10 \mathrm{rad} / \mathrm{s}$
And the initial phase
$\emptyset_{0}=\pi / 4 \mathrm{rad}$
Hence the period of oscillation is given by

$$
T=\frac{2 \pi}{\omega}=\frac{6.28}{10}=0.628 \mathrm{~s}
$$

c) The position of the mass at $t=5 \mathrm{~s}$ is given by

$$
\begin{array}{ll}
& x(5)=(5.0 \mathrm{~cm}) \cos (10 * 5+\pi / 4) \\
\text { Or } & x(5)=(5.0 \mathrm{~cm}) \cos \left(50 * \frac{\pi}{3.14}+\frac{\pi}{4}\right) \\
\text { Or } & x(5)=(5.0 \mathrm{~cm}) \cos (15.9 \pi+0.25 \pi) \\
\text { Or } & x(5)=(5.0 \mathrm{~cm}) \cos (16.17 \pi) \\
\text { Or } & x(5)=(5.0 \mathrm{~cm}) \cos (16 \pi+0.17 \pi) \\
\text { Or } & x(5)=(5.0 \mathrm{~cm}) \cos (0.17 \pi) \\
\text { Or } & x(5)=(5.0 \mathrm{~cm}) \cos (30.6)^{0} \\
\text { Or } & x(5)=(5.0 \mathrm{~cm}) 0.861=4.30 \mathrm{~cm}
\end{array}
$$

d) The velocity as a function of time is given by

$$
v(t)=\frac{d x(t)}{d t}=(5.0 \mathrm{~cm}) \frac{\mathrm{d}}{\mathrm{dt}} \cos (10 t+\pi / 4)
$$

Or $\quad v(t)=-(50.0 \mathrm{~cm} / \mathrm{s}) \sin (10 t+\pi / 4)$

Hence the velocity of the particle at $t=5 \mathrm{~s}$ will be

$$
v(5)=-(50.0 \mathrm{~cm} / \mathrm{s}) \sin \left(30.6^{0}\right)
$$

Or $\quad v(5)=-50 * 0.509=-25.4 \mathrm{~cm} / \mathrm{s}=-0.254 \mathrm{~m} / \mathrm{s}$
e) The maximum velocity of the particle is given by

$$
v_{\max }=A \omega=5.0 * 10=50 \mathrm{~cm} / \mathrm{s}=0.5 \mathrm{~m} / \mathrm{s}
$$

f) The maximum kinetic energy of the system will be

$$
\frac{1}{2} m v^{2}{ }_{\text {max }}=0.5 * 0.08 *(0.5 \mathrm{~m})^{2}=0.01 \mathrm{~J}
$$

Maximum potential energy of the system with respect to the equilibrium position will be same as that of the kinetic energy and hence equal to 0.01 J .
g) The acceleration is the rate of change of velocity and thus given by

$$
a=\frac{d v(t)}{d t}=-(50.0 \mathrm{~cm} / \mathrm{s}) \frac{d}{d t} \sin (10 t+\pi / 4)
$$

Or $\quad a=\frac{d v(t)}{d t}=-\left(500.0 \mathrm{~cm} / \mathrm{s}^{2}\right) \cos (10 t+\pi / 4)$
Or $\quad a(t)=-\left(5.0 \mathrm{~m} / \mathrm{s}^{2}\right) \cos (10 t+\pi / 4)$
Thus $a(5)=-\left(5.0 \mathrm{~m} / \mathrm{s}^{2}\right) \cos (10 * 5+\pi / 4)$
Or

$$
a(5)=-\left(5.0 \mathrm{~m} / \mathrm{s}^{2}\right) \cos \left(30.6^{0}\right)=4.3 \mathrm{~m} / \mathrm{s}^{2}
$$

