Q- A scuba diver releases a 2.50-cm-diameter (spherical) bubble of air from a depth of 15.0 m in a lake. Assume the temperature is constant at $16.0^{\circ} \mathrm{C}$, and the air behaves as a perfect gas. What is the diameter of the bubble when it reaches the surface?

The volume of air in bubble at depth h will be

$$
V_{1}=\frac{4}{3} \pi\left(\frac{D_{1}}{2}\right)^{3}
$$

The pressure at depth h will be

$$
P_{1}=P_{a t m}+h \rho_{w} g
$$

Pressure at the surface

$$
P_{2}=P_{a t m}
$$

If the diameter at the surface is D_{2} then

$$
V_{2}=\frac{4}{3} \pi\left(\frac{D_{2}}{2}\right)^{3}
$$

At constant temperature according to Boyle's law

$$
P_{2} V_{2}=P_{1} V_{1}
$$

Or $\quad P_{a t m} * \frac{4}{3} \pi\left(\frac{D_{2}}{2}\right)^{3}=\left(P_{a t m}+h \rho_{w} g\right) * \frac{4}{3} \pi\left(\frac{D_{1}}{2}\right)^{3}$
Or $\quad P_{\text {atm }} *\left(D_{2}\right)^{3}=\left(P_{\text {atm }}+h \rho_{w} g\right) *\left(D_{1}\right)^{3}$
Or

$$
\left(D_{2}\right)^{3}=\left(1+\frac{h \rho_{w} g}{P_{a t m}}\right) *\left(D_{1}\right)^{3}
$$

Or

$$
D_{2}=\left(1+\frac{h \rho_{w} g}{P_{a t m}}\right)^{1 / 3} * D_{1}
$$

Or

$$
D_{2}=\left(1+\frac{15 * 1000 * 9.8}{1.03 * 10^{5}}\right)^{1 / 3} * 2.50 \mathrm{~cm}
$$

Or $\quad D_{2}=\left(1+\frac{1.74 * 10^{5}}{1.03 * 10^{5}}\right)^{1 / 3} * 2.50 \mathrm{~cm}$
Or

$$
D_{2}=(2.4)^{1 / 3} * 2.50 \mathrm{~cm}=1.34 * 2.50=3.35 \mathrm{~cm}
$$

