Q- An artillery shell is fired with an initial velocity of $300 \mathrm{~m} / \mathrm{s}$ at 60 degrees above the horizontal. It explodes 40.0 s after firing. What are the x and y coordinates of the shell where it explodes relative to its firing point?

As the motion of the shell is in a plane (two dimensional space) and the acceleration is that due to gravity which is vertically downward, we resolve initial velocity of the shell v_{o} in horizontal and vertical directions.

If the initial velocity of the shell is making angle θ with the horizontal, the horizontal component of initial velocity will be

$$
v_{x}=v_{0} * \cos \theta
$$

As the acceleration of the shell is vertical having no horizontal component, the shell may be considered to move horizontally with constant velocity of v_{x} and hence the horizontal distance covered (or the x coordinate of the shell with point of projection as origin) is given by
[Distance $=$ velocity*time $]$
$\mathrm{X}=\mathrm{v}_{\mathrm{x}} * \mathrm{t}=\mathrm{v}_{0} * \cos \theta^{*} \mathrm{t}=300 * \cos 60^{\circ} * 40.0=300 * 0.500 * 40=6000 \mathrm{~m}$
Or

$$
x=6000 \mathrm{~m}
$$

The vertical component of the initial velocity will be

$$
v_{y}=v_{0} * \sin \theta
$$

The acceleration of gravity is vertically downward and is $\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$, hence the vertical distance covered (or y coordinate of the shell) is given by the second equation of motion [$\mathrm{s}=\mathrm{v}_{0} * \mathrm{t}+1 / 2 \mathrm{at}^{2}$] as

Or

$$
Y=v_{0} * \sin \theta^{*} t+1 / 2 g t^{2}
$$

$$
y=300 * \sin 60^{\circ} * 40.0+0.5^{*}(-9.8) *(40.0)^{2}
$$

Or $\quad y=300 * 0.866 * 40.0-0.5 * 9.8 * 1600=10392-7840=2552 \mathrm{~m}$
Or $\quad y=2552 \mathbf{m}$.

