Q- A monochromatic source of wavelength 450 nanometers illuminates a double slit, with 45 micrometer spacing between the slits. If a screen is placed 4 meters from the slits, determine the vertical spacing between the central maximum and the third constructive order.

As the distance of the nth order maxima from the central point of the screen is given by

$$
x_{n}=\frac{n \lambda D}{d}
$$

For the central maxima $\mathrm{n}=0$ hence we have $x_{0}=0$ means that the central maxima will be at C .

For the first order maxima substituting

the value of $n=3$ we have

$$
x_{3}=\frac{3 \lambda \mathrm{D}}{\mathrm{~d}}
$$

Hence the distance between the central and third order maxima will be
$x_{3}-x_{0}=\frac{3 \lambda \mathrm{D}}{\mathrm{d}}=\frac{3 * 450 * 10^{-9} * 4}{45 * 10^{-6}}=0.12 \mathrm{~m}$
...The distance on the screen between any two consecutive maxima is same, called fringe width and given by

$$
\beta=\frac{\lambda D}{d}
$$

