Q- Two charges Q_{c} and $-Q_{c}\left(Q_{c}=4 \mu \mathrm{C}\right)$ are fixed on the x-axis at $x=-6 \mathrm{~cm}$ and $x=6 \mathrm{~cm}$, respectively. A third charge $Q_{b}=5 \mu \mathrm{C}$ is fixed at the origin. A particle with charge $q=0.5$ $\mu \mathrm{C}$ and mass $m=6 \mathrm{~g}$ is placed on the y-axis at $y=14 \mathrm{~cm}$ and released. There is no gravity. Calculate the initial acceleration of the particle.

The two equal and opposite charges Qc and - Qc will make a dipole and the field on the perpendicular bisector of this dipole at a distance y is given by

$$
\begin{aligned}
\vec{E}_{1} & =\frac{1}{4 \pi \in_{0}} \cdot \frac{2 Q_{C} x}{\left[y^{2}+x^{2}\right]^{3 / 2}} \hat{i}=\frac{\left(9 * 10^{9}\right) * 2 * 4 * 10^{-6} * 0.06}{\left[0.14^{2}+0.06^{2}\right]^{3 / 2}} \hat{i} \\
\text { Or } \quad \vec{E}_{1} & =1.22 * 10^{6} \hat{i} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

Field at the same point due to charge Q_{b} will be given by Coulomb's law as

$$
\vec{E}_{2}=\frac{Q_{b}}{4 \pi \epsilon_{0} y^{2}}(\hat{j})=\frac{\left(9 * 10^{9}\right) * 5 * 10^{-6}}{0.14^{2}}(\hat{j})=2.296 * 10^{6}(\hat{j}) \mathrm{N} / \mathrm{C}
$$

Hence force on the particle in x direction will be

$$
F x=E x * q=E_{1} * q=1.22 * 10^{6} * 0.5 * 10^{-6}=0.61 \mathrm{~N}
$$

And the force in y direction will be

$$
\mathrm{Fy}=\mathrm{Ey} * \mathrm{q}=\mathrm{E}_{2} * \mathrm{q}=2.296 * 10^{6} * 0.5 * 10^{-6}=1.148 \mathrm{~N}
$$

Thus the resultant force on the particle at initial position is given by

$$
F=\sqrt{F_{x}^{2}+F_{y}^{2}}=\sqrt{0.61^{2}+1.148^{2}}=1.3 \mathrm{~N}
$$

So the initial acceleration of the particle will be

$$
a=\frac{F}{m}=\frac{1.3}{0.006}=2.17 * 10^{2} \mathrm{~m} / \mathrm{s}
$$

