Q- A 3.00-g lead bullet at 30.0 degrees C is fired at a speed of $240 \mathrm{~m} / \mathrm{s}$ into a large block of ice at 0 degrees C, in which it embeds itself. What quantity of ice melts?
(Specific heat capacity of lead is $128 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ and latent heat of melting of ice is $333 * 10^{3} \mathrm{~J} / \mathrm{kg}$)

Answer:
The Amount of energy given to the ice is the kinetic energy of the bullet and the heat released by the bullet in cooling down to $0^{\circ} \mathrm{C}$.

The kinetic energy of the bullet $=(1 / 2) \mathrm{mv}^{2}=0.5^{*} 3^{*} 10^{-3} * 240^{2}=86.4 \mathrm{~J}$
The energy released by the bullet in cooling down to $0^{\circ} \mathrm{C}$
$\mathrm{m} s \Delta \mathrm{t}=3^{*} 10^{-3} * 128^{*}(30-0)=11.52 \mathrm{~J}$
Here $s=128 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ is the specific heat capacity of lead.
Hence the total heat given to the ice $=86.4+11.52=97.92 \mathrm{~J}$
The latent heat of melting of ice is $L=333^{*} 10^{3} \mathrm{~J} / \mathrm{kg}$
Hence mass of the ice melted is given by $\mathrm{m}^{\prime}=$ heat absorbed/latent heat

$$
\begin{aligned}
& =97.92 /\left(333 * 10^{3}\right)=0.294 * 10^{-3} \mathrm{~kg} . \\
& =0.294 \mathrm{~g}
\end{aligned}
$$

