Q-An object is accelerating along x axis with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ for three 3 s and attaining a velocity of $20 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with positive x direction.
(a) Calculate magnitude of initial velocity of the object.
(b) Find the direction of initial velocity vector.

The final velocity vector can be resolved in x and y direction and the components are given by

$$
v_{x}=v \cos \theta=20 \cos 30^{\circ}=20 * 0.866=17.3 \mathrm{~m} / \mathrm{s}
$$

And $\quad v_{y}=v \sin \theta=20 \sin 30^{\circ}=20 * 0.500=10.0 \mathrm{~m} / \mathrm{s}$
As the acceleration in \times direction is $2 \mathrm{~m} / \mathrm{s} 2$ the x component of its initial velocity $u x$ is given by using equation of motion as

$$
\begin{array}{ll}
& v_{x}=u_{x}+a t \\
\text { Or } & 17.3=u_{x}+2 * 3 \\
\text { Or } & u_{x}=17.3-6=11.3 \mathrm{~m} / \mathrm{s}
\end{array}
$$

As there is no acceleration in y direction the y component of velocity remains constant i.e.

$$
u_{y}=v_{x}=10.0 \mathrm{~m} / \mathrm{s}
$$

Hence
(a) magnitude of initial velocity

$$
u=\sqrt{u_{x}^{2}+u_{y}^{2}}=\sqrt{11.3^{2}+10^{2}}=15.1 \mathrm{~m} / \mathrm{s}
$$

(b) direction of initial velocity is given by

$$
\tan \emptyset=\frac{10}{11.3}=8.85
$$

Or

$$
\emptyset=\tan ^{-1} 8.85=41.5^{0}
$$

Thus the initial velocity is $15.1 \mathrm{~m} / \mathrm{s}$ at an angle of 41.5 degree with positive x direction.

