Q- Three charges are placed at the vertices of an equilateral triangle of side $a=6 \mathrm{~cm} . q_{A}=$ $+3 \mu \mathrm{C}, q_{B}=+3 \mu \mathrm{C}$, and $q_{C}=-3 \mu \mathrm{C}$.
(a) Find the x - and y - components of the electric force acting on q_{c}.

The force between two point charges is given by Coulomb's law.
Magnitude of the forces on q_{c} due to the other charges will be the equal and given by

$$
F=\frac{q_{A} q_{C}}{4 \pi \in_{0} a^{2}}=\frac{9 * 10^{9} *\left(3 * 10^{-6}\right)\left(-3 * 10^{-6}\right)}{0.06^{2}}=-22.5 \mathrm{~N}
$$

Negative sign shows that this is the force of attraction.
The directions of these two equal forces are making an angle 60° and hence their resultant will bisect the angle means in negative y direction and its magnitude is given by

$$
F_{y}=2 F \cos \left(30^{\circ}\right)=2 * 22.5 * 0.866=38.97 N
$$

Hence
$F_{x}=0 \mathrm{~N}$

$F_{y}=-39 \mathrm{~N}$
(b) Find the electric field at the position of q_{C} due to q_{A} and q_{B}.

The electric field will be given by

$$
E y=F y / q c=-39 /\left(-3^{*} 10^{-6}\right)=1.3^{*} 10^{7} \mathrm{~N} / \mathrm{C}
$$

$E_{x}=0 \mathrm{~N} / \mathrm{C}$
$E_{y}=1.299 * 10^{7} \mathrm{~N} / \mathrm{C}$
Thus the electric field is $1.3^{*} 10^{7} \mathrm{~N} / \mathrm{C}$ along the positive y direction.

