Q- A 240 g mass suspended by a 0.8 m long string is pulled 8.4° to one side and released. How long does it take for the pendulum to reach 6.0° on the opposite side?

For small angles the motion of a pendulum bob is simple harmonic with time period T given by

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

Where L is the length of the pendulum
The angular frequency for this motion is given by

$$
\omega=\frac{2 \pi}{T}=\sqrt{\frac{g}{L}}=3.5 \mathrm{rad} / \mathrm{sec} .=200.6^{\circ} / \mathrm{s}
$$

The displacement from equilibrium position as a function of time is given by

$$
X=\theta L=A \sin (\omega t+\phi)
$$

Initially at $\mathrm{t}=0$ the bob is released from extreme position $\theta=\theta_{\text {max }}$, the initial phase ϕ is 90° and hence the equation can be written as

Or

$$
\theta L=\theta_{\max } L \sin \left(\omega t+90^{\circ}\right) \quad \text { (For small angles } \sin \theta=\theta \text { in radians) }
$$

$$
\begin{equation*}
\theta=\theta_{\max } \cos (\omega \mathrm{t}) \tag{1}
\end{equation*}
$$

Now here $\theta_{\text {max }}=8.4^{0}$
And $\quad \theta=-6.0^{\circ}$
Substituting in equation 1 we get

$$
-6.0^{\circ}=8.4^{\circ} \cos \left[(200.6)^{*} \mathrm{t}\right]
$$

Or $\quad \cos \left[\left(200.6^{0}\right)^{*} t\right]=-6.0^{0} / 8.4^{0}=-0.714$
Gives $\left(200.6^{0}\right)^{*} \mathrm{t}=\cos ^{-1}(-0.714)=\left[135.58^{0}\right]$
Gives $\mathrm{t}=135.58 / 200.6=0.676 \mathrm{~s}$

