Q- At some place the temperature of air is 20 degrees C and the pressure is $1.021 * 10^{5} \mathrm{~Pa}$. Calculate the density of air.

Considering air as an ideal gas the ideal gas law can be written as

$$
P V=\frac{m}{M} R T
$$

Here P is the pressure, V is volume, T is absolute temperature, m is the mass of the gas, M is its molecular mass and R is universal gas constant.

Thus the density of the gas is given by

$$
\rho=\frac{m}{V}=\frac{P M}{R T}
$$

Now the molecular mass of air is $29 \mathrm{~kg} / \mathrm{kmol}$, and the universal gas constant $\mathrm{R}=8314$ J/kmol, we get

$$
\rho=\frac{P M}{R T}=\frac{1.012 * 10^{5} * 29}{8314 *(20+273)}=1.205 \mathrm{~kg} / \mathrm{m}^{3}
$$

