Q- A 150 m long rope of mass 250 kg is wrapped on a spool and its 50.0 m is hanging vertically. Now the spool is rotated to pull the rope up slowly. How much work is to be done to pull further 20.0 m of the rope? Neglect any friction force.

Let the mass of the rope is M and its length is L.
The mass of the rope per unit length is M / L
Let the length of the hanging part be / initially and it is pulled further by x .
The mass of the hanging part of the rope initially will be given by

$$
m_{1}=\frac{M}{L} * l
$$

The depth of the center of mass of this hanging part will be $/ / 2$ and thus its potential energy relative to the spool position is given by

$$
U_{1}=m_{1} g\left(-\frac{l}{2}\right)=-\frac{M}{L} * \lg \left(\frac{l}{2}\right)=-\frac{M g l^{2}}{2 L}
$$

And similarly the mass after the x more length is pulled up will be

$$
m_{2}=\frac{M}{L} *(l-x)
$$

The depth of the center of mass of this part will be $(I-x) / 2$ and thus its potential energy relative to the spool position is given by

$$
U_{2}=m_{2} g\left(-\frac{l-x}{2}\right)=-\frac{M}{L} *(l-x) g \frac{(1-\mathrm{x})}{2}=-\frac{M g(l-x)^{2}}{2 L}
$$

Hence using work energy rule
Work done = increase in potential energy

Or $\quad W=U_{2}-U_{1}$

$$
W=-\frac{M g(l-x)^{2}}{2 L}-\left(-\frac{M g l^{2}}{2 L}\right)_{1}
$$

Or $\quad W=\frac{M g}{2 L}\left[-(l-x)^{2}+l^{2}\right]$
Or $\quad W=\frac{M g}{2 L}\left[2 l x-x^{2}\right]$
Or $\quad W=\frac{M g x}{2 L}[2 l-x]$
Substituting numerical values we get

$$
W=\frac{250 * 9.8 * 20}{2 * 150}[2 * 50-20]=1.31 * 10^{4} \mathrm{~J}
$$

