Q- A bungee jumper whose mass is 95 kg , has just completed his first bungee jump and is now bouncing up and down at the end of the cord. His oscillations have initial amplitude of 7 m and a period of 4.0 s .
(a) What is the spring constant of the bungee cord?

The time period of a simple harmonic motion is given by

$$
T=2 \pi \sqrt{\frac{m}{K}}
$$

Gives $\quad K=\frac{4 \pi^{2} m}{T^{2}}=\frac{4 * 3.14^{2} * 95}{16.0}=234.16 \mathrm{~N} / \mathrm{m}$
(b) What is jumper's maximum speed while oscillating?

The total energy of oscillation is given by the maximum potential energy as

$$
U=1 / 2 K A^{2}=0.5 * 234.16 * 7^{2}=5736.92 \mathrm{~J}
$$

The speed is maximum when the whole potential energy of oscillation will convert in to kinetic energy and hence

$$
\frac{1}{2} m v_{\max }^{2}=5736.92
$$

Gives $v_{\max }^{2}=\frac{5736.92 * 2}{m}=\frac{5736.92 * 2}{95}=120.77$
Or $\quad v_{\max }=\sqrt{120.78}=10.99 \mathrm{~m} / \mathrm{s}$
(c) From what height above the lowest point did the jumper jump?

The extension for the equilibrium position is

$$
x_{0}=m g / K=95 * 9.8 / 234.16=3.976 \mathrm{~m}
$$

Hence total extension in the cord for the lowest point will be

$$
x_{0}+A=3.976+7=10.976 \mathrm{~m}
$$

At the lowest point the velocity and hence the kinetic energy is zero. Thus according to law of conservation of energy
loss in gravitational $\mathrm{PE}=$ gain in elastic potential energy
or $\quad m g h=1 / 2 K\left(x_{0}+A\right)^{2}$
gives $h=234.16 * 10.976^{2} /(2 * 95 * 9.8)=15.15 \mathrm{~m}$
(d) If the damping constant due to air resistance is $6.0 \mathrm{~kg} / \mathrm{s}$, how many oscillations will the jumper make before his amplitude has decreased to 4.0 m ?

The amplitude as a function of time for a damped oscillation is given by

$$
A(t)=A_{0} e^{-(b / 2 m) t}
$$

Where A_{0} is the initial amplitude, b is damping constant and m is the mass of the object. Hence substituting the values we have

$$
4.0=7.0^{*} e^{-(6.0 / 2 * 95) t}
$$

Gives $e^{0.0316 * t}=7 / 4=1.75$
Or $\quad 0.0316 * t=\ln 1.75$
Or $\quad t=0.56 / 0.0316=17.72 \mathrm{~s}$
Hence the number of oscillations in this time will be
$17.72 / 4.0=4.43$

