Q- A circular loop of radius $a=20 \mathrm{~cm}$ and $N=168$ turns is fixed in the $x-y$ plane. A spatially uniform magnetic field with only a z-component covers the entire area of the loop. The plot at the right shows B_{z} measured in tesla versus time t measured in seconds. The $+z$ direction is OUT of the screen.
(a) Calculate the magnetic flux through the loop in the z-direction at the times indicated below. In each case, specify the direction by giving a positive value for flux in the $+z$ direction and a negative value for flux in the $-z$ direction.

The flux through a loop of area A, in a magnetic field B and having number of turns N is given by

$$
\phi=N * B * A \cos \theta
$$

Where θ is the angle between area vector A and the field B.

$$
\begin{array}{ll}
\text { Or } & \phi=N^{*} B^{*} \pi \mathrm{a}^{2} \cos \theta \\
\text { Or } & \phi=168^{*} \mathrm{~B}^{*} 3.14^{*} 0.2^{2} \cos \theta \\
\text { Or } & \phi=21.1^{*} \mathrm{~B} \cos \theta
\end{array}
$$

As the positive direction of the field and area both are the same $(+z), \theta=0$ and hence $\cos \theta$ = 1 hence

$$
\phi=21.1 * \mathrm{~B}
$$

Substituting the values of the magnetic field from the graph we get

At $t=1.0 \mathrm{~s}$ the field $B=1 \mathrm{~T}$ gives

$$
\phi_{1}=21.1 * 1=21.1 \mathrm{~T}-\mathrm{m}^{2}
$$

At $t=3.0 \mathrm{~s}$ the field $B=2 \mathrm{~T}$ gives

$$
\phi_{2}=21.1 * 2=42.2 \mathrm{~T}-\mathrm{m}^{2}
$$

At $t=5.0 \mathrm{~s}$ the field $\mathrm{B}=0 \mathrm{~T}$ gives

$$
\phi_{3}=0 \mathrm{~T}-\mathrm{m}^{2}
$$

At $t=6.5 \mathrm{~s}$ the field $\mathrm{B}=-2 \mathrm{~T}$ gives

$$
\phi_{4}=21.1^{*}(-2)=-42.2 \mathrm{~T}-\mathrm{m}^{2}
$$

At $t=8 \mathrm{~s}$ the field $B=0 \mathrm{~T}$ gives

$$
\phi_{5}=21.1 * 0=0 \mathrm{~T}-\mathrm{m}^{2}
$$

At $t=9.5 \mathrm{~s}$ the field $\mathrm{B}=2 \mathrm{~T}$ gives

$$
\phi_{6}=21.1 * 2=42.2 \mathrm{~T}-\mathrm{m}^{2}
$$

(b) Calculate the induced EMF (electromotive force) in the loop at the times specified below. In each case specify the sense of the EMF by giving a positive value for a counterclockwise EMF as viewed in the above figure; specify a clockwise sense by giving a negative value.

The induced EMF is given by the faraday's law as

$$
\mathrm{E}=-\mathrm{d} \phi / \mathrm{dt}=-\mathrm{N} * \mathrm{~A}^{*}(\mathrm{~dB} / \mathrm{dt})=-21.1^{*}(\mathrm{~dB} / \mathrm{dt})
$$

The rate of change of field is given by the slope of the graph
In first two second the field increases from 0 to 2 T by 2 T in 2 sec and hence the slope is $2 / 2$ $=1 \mathrm{~T} / \mathrm{s}$ and hence the induced EMF will be

$$
\mathrm{E}_{1}=-21.1_{1}=-21.1 \mathrm{~V}
$$

The direction is in accordance to the Lenz law
At $t=3.0$ s the graph is parallel to t axis means B is constant and hence $d B / d t=0$ so induced EMF is also zero.

$$
E_{2}=0
$$

From 4 to $6 s$ the field changes uniformly from $2 T$ to $-2 T$ in 2 sec hence $d B / d t=-2 T / s$ hence at $\mathrm{t}=5 \mathrm{~s}$

$$
\mathrm{E}_{3}=-21.1^{*}(-2)=+42.2 \mathrm{~V}
$$

At $t=6.5 \mathrm{~s}$ the graph is parallel to t axis means B is constant and hence $d B / d t=0$ so induced EMF is also zero

$$
E_{4}=0
$$

From 7 to 9 s the field changes uniformly from $-2 T$ to $2 T$ in 2 sec hence $d B / d t=2 T / s$ hence

$$
E_{5}=-21.1 * 2=-42.2 \mathrm{~V}
$$

At $t=9.5$ s the graph is parallel to t axis means B is constant and hence $d B / d t=0$ so induced EMF is also zero

$$
E_{6}=0
$$

