Q- Two charges placed on the x axis. $Q_{a}=4 \mu \mathrm{C}$ at $\mathrm{x}=0$ and $Q_{b}=-4 \mu \mathrm{C}$ at $\mathrm{x}=22 \mathrm{~cm}$.
(a) Find the net electric field at point P, at $x=-6 \mathrm{~cm}$.

The electric field at a point at distance r from a positive charge Q is given by

$$
\vec{E}=\frac{Q}{4 \pi \in_{0} r^{2}} * \hat{r}
$$

Here \hat{r} is the unit vector along the line joining the charge to the point.
Hence the field at P due to charge Qa will be

$$
\vec{E}_{a}=\frac{Q_{a}}{4 \pi \in_{0} d^{2}} *(-\hat{i})=\frac{9 * 10^{9} * 4 * 10^{-6}}{0.06^{2}} *(-\hat{i})=1.0 * 10^{7}(-\hat{i}) \mathrm{N} / \mathrm{C}
$$

Here \hat{i} is the unit vector in x direction and negative as the field is in negative x direction. Similarly the field due to Qb will be

$$
\vec{E}_{b}=\frac{Q_{b}}{4 \pi \in_{0}(a+d)^{2}} *(-\hat{i})=\frac{9 * 10^{9} *\left(-4 * 10^{-6}\right)}{0.28^{2}} *(-\hat{i})=0.0459 * 10^{7} \hat{i}
$$

According to the law of superposition of the field the resultant field is given by the vector sum of the two fields and hence the resultant field at P is given by

$$
\vec{E}=\vec{E}_{1}+\vec{E}_{2}=-1.0 * 10^{7} \hat{\imath}+0.459 * 10^{7} \hat{\imath}=-0.541 * 10^{7} \hat{\imath}
$$

Hence the magnitude of the net electric field at P is $\mathbf{0 . 5 4 1} * \mathbf{1 0}^{\mathbf{7}} \mathbf{N} / \mathbf{c}$ and its direction is along negative x direction.
(b) Find the force on Q_{b} due to Q_{a}.

The force on Qb due to Qa is given by

$$
\vec{F}_{b a}=\frac{Q_{a} Q_{b}}{4 \pi \in_{0} r_{a b}^{2}} \hat{r}_{a b}
$$

Where $\hat{r}_{a b}$ is the unit vector from Qa to Qb.
Or $\quad \vec{F}_{b a}=\frac{9 * 10^{9}\left(4 * 10^{-6}\right)\left(-4 * 10^{-6}\right)}{(0.22)^{2}} \hat{i}=-2.975 \hat{i} \mathrm{~N}$
Means the magnitude of the force is 2.975 N and it is in negative x direction.
(c) The charges Q_{a} and Q_{b} are now attached to the ends of a spring whose un-stretched length is $s_{0}=22 \mathrm{~cm}$. With the charges attached, the spring compresses to an equilibrium length $s_{1}=12 \mathrm{~cm}$. Calculate the spring constant k_{s} of the spring.

The spring constant of the spring is the force required per unit extension and hence if the change in length of the spring is Δl when force F is applied to the spring,, the force constant is given by

$$
K=F / \Delta I
$$

Now the change in the length of the spring is $\Delta \mathrm{l}=22-12=10 \mathrm{~cm}=0.1 \mathrm{~m}$
And the force of attraction between the charges is

$$
F=\frac{Q_{a} Q_{b}}{4 \pi \in_{0} l^{2}}=\frac{9 * 10^{9}\left(4 * 10^{-6}\right)\left(-4 * 10^{-6}\right)}{(0.12)^{2}}=10 \mathrm{~N}
$$

Hence the force constant of the spring is given by $K=F / \Delta I=10 / 0.1=100 \mathrm{~N} / \mathrm{m}$

$$
k_{s}=100.0 \mathrm{~N} / \mathrm{m}
$$

