Q- Represent current waveforms $I_{1}=4 \cos (\omega t)$ and $I_{2}=3 \sin (\omega t)$ in a phasor diagram, using sin (wt) as the reference phasor. Now represent the resultant current waveform on the phasor diagram in the same way.

The current wave forms can be written as
(i) $\quad I_{1}(t)=4 \cos (\omega t)$

Or $\quad I_{1}(t)=4 \sin \left(\omega t+90^{\circ}\right)$
And thus at $t=0$ the phase angle is $90^{\circ}$ and hence this current can be shown on phasor diagram as in the diagram.
(ii) $\quad I_{2}(t)=3 \sin (\omega t)$

And thus at $\mathrm{t}=0$ the phase angle is 0 and hence this current can be shown on phasor diagram as in the diagram

The two current waveforms can be represented on the same phase diagram. As the currents are here shown by the vectors of magnitudes 4 A and 3 A respectively, if both waveforms are simultaneously present their resultant waveform I ( t ) is shown by the vector sum of the two vectors and thus given by the diagonal of the parallelogram (rectangle here) form by the two vectors thus given as in diagram.

Clearly the magnitude of the resultant waveform will be 5 A and the phase angle will be $\omega \mathrm{t}+\tan ^{-1}(4 / 3)$


