Q- The displacement of a wave traveling in the negative y-direction is $D(y, t)=(5.0 \mathrm{~cm}) \sin$ $(5.5 y+74 t)$, where y is in m and t is in s . What are each for the following of this wave?
(a) Frequency
(b) Wavelength
(c) Speed

The equation of a wave traveling in negative y direction is given by

$$
D(y, t)=A \sin (K y+\omega t)
$$

Here A is the amplitude of wave, K is the wave number given by $\frac{2 \pi}{\lambda}$ and ω is the angular frequency.

Comparing the equation with the given equation we get

$$
\mathrm{A}=5.0 \mathrm{~cm}, \mathrm{~K}=5.5 \mathrm{~m}^{-1} \text { and } \omega=74 \mathrm{rad} / \mathrm{s}
$$

(a) Frequency

The frequency of the wave is given by

$$
\mathrm{n}=\frac{\omega}{2 \pi}=\frac{74}{2 * 3.14}=11.78 \mathrm{~Hz}
$$

(b) Wavelength

The wavelength is given by

$$
\lambda=\frac{2 \pi}{K}=\frac{2 * 3.14}{5.5}=1.14 m
$$

(c) Speed

The speed of a wave in the medium is given by

$$
c=n * \lambda=11.78 * 1.14=13.43 \mathrm{~m} / \mathrm{s}
$$

