Q- a small body of mass m_{o} is projected vertically upwards in a cloud. Its initial speed is $\sqrt{2 g k}$. During its motion the body picks up moisture from the stationary cloud. Its mass at height x above the point of projection is $m_{0}(1+\rho x)$, where ρ is a +ve constant. Show that the greatest height h satisfies the equation
$(1+\rho h)^{3}=(1+3 k \rho)$

According to Newton's second law of motion we know

$$
\frac{d P}{d t}=F
$$

Or $\quad \frac{d P}{d t} * \frac{d x}{d x}=\frac{d P}{d x} * \frac{d x}{d t}=\frac{d P}{d x} * v=F$
The force acting on the body at the instant when its mass is m, is the gravitational force mg , (downwards) we can write its equation of motion as

$$
\begin{gathered}
v^{*} \frac{d}{d x}(m v)=-m g \\
\text { or } \quad m v \frac{d v}{d x}+v^{2} \frac{d m}{d x}=-m g
\end{gathered}
$$

When the height of the body is x its mass $m=m_{0}(1+\rho x)$ hence substituting the value we have

$$
m_{0}(1+\rho x) v \frac{d v}{d x}+v^{2} \frac{d m_{0}(1+\rho x)}{d x}=-m_{0}(1+\rho x) g
$$

or $\quad(1+\rho x) v \frac{d v}{d x}+v^{2} \frac{d(1+\rho x)}{d x}=-(1+\rho x) g$
or $\quad 2 v \frac{d v}{d x}+v^{2} \frac{2 \rho}{(1+\rho x)}=-2 g$
or $\quad \frac{d\left(v^{2}\right)}{d x}+v^{2} \frac{2 \rho}{(1+\rho x)}=-2 g$
This is a linear differential equation in v^{2}
Now

$$
\int \frac{2 \rho}{1+\rho x} d x=2 \ln (1+\rho x)
$$

Hence integrating factor, $\mathrm{I}=\int \frac{2 \rho}{1+\rho x} d x=2 \ln (1+\rho x)=(1+\rho x)^{2}$
Multiplying the equation (1) by integrating factor I we have

$$
\begin{aligned}
& \quad \begin{array}{l}
(1+\rho x)^{2} \frac{d\left(v^{2}\right)}{d x}+v^{2} 2 \rho(1+\rho x)=-2 g(1+\rho x)^{2} \\
\text { Or } \quad \frac{d}{d x}\left[v^{2}(1+\rho x)^{2}\right]=-2 g(1+\rho x)^{2}
\end{array}, l
\end{aligned}
$$

Integrating above equation with respect to x we get

$$
\begin{align*}
& \quad \frac{d}{d x}\left[v^{2}(1+\rho x)^{2}\right]=-2 g \int(1+\rho x)^{2} d x+C \\
& \text { or } \quad\left[v^{2}(1+\rho x)^{2}\right]=-2 g \frac{(1+\rho x)^{3}}{3 \rho}+C \tag{2}
\end{align*}
$$

C is the constant of integration.

Initially at $x=0$ the initial velocity v_{0} is given as $v_{0}=\sqrt{ }(2 g k)$, substituting these values in equation (2) we get

$$
\begin{aligned}
& \quad\left[2 g k *(1+\rho * 0)^{2}\right]=-2 g \frac{(1+\rho * 0)^{3}}{3 \rho}+C \\
& \text { Gives } \quad C=2 g k+\frac{2 g}{3 \rho}
\end{aligned}
$$

Substituting this value of C in equation (2) we get the velocity of the body as a function of its height x as

$$
\begin{equation*}
\left[v^{2}(1+\rho x)^{2}\right]=-2 g \frac{(1+\rho x)^{3}}{3 \rho}+2 g k+\frac{2 g}{3 \rho} \tag{3}
\end{equation*}
$$

Now when the height of the body h is the greatest its velocity will be zero and hence substituting greatest height h for x and $\mathrm{v}=0$ in equation (3) we get

$$
0=-2 g \frac{(1+\rho h)^{3}}{3 \rho}+2 g k+\frac{2 g}{3 \rho}
$$

Or $\quad 2 g \frac{(1+\rho h)^{3}}{3 \rho}=2 g k+\frac{2 g}{3 \rho}$
Or $\quad(1+\rho h)^{3}=3 \rho k+1$
Hence shown

