Q- a small body of mass mo is projected vertically upwards in a cloud. Its initial speed
isJZgﬁ. During its motion the body picks up moisture from the stationary cloud. Its mass
at height x above the point of projection is mo(1+ px), where p is a +ve constant. Show
that the greatest height h satisfies the equation

(1+ph)3=(1+3kp)

According to Newton’s second law of motion we know
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The force acting on the body at the instant when its mass is m, is the gravitational force
mg, (downwards) we can write its equation of motion as
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When the height of the body is x its mass m = mo (1+px) hence substituting the value
we have
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This is a linear differential equation in v?
Now
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Hence integrating factor, I = Ilfix dx = 2In(1+ pX) = (1+ px)2

Multiplying the equation (1) by integrating factor I we have
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Integrating above equation with respect to x we get
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C is the constant of integration.

Initially at x = 0 the initial velocity vo is given as vo = V (2gk), substituting these values
in equation (2) we get
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Gives C =2gk +§—g
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Substituting this value of C in equation (2) we get the velocity of the body as a function
of its height x as
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Now when the height of the body h is the greatest its velocity will be zero and hence
substituting greatest height h for x and v = 0 in equation (3) we get
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Hence shown



