Q- A circular loop with radius $a=0.35 \mathrm{~m}$ and $N=21$ turns lies in the plane of the page. The wire used in constructing the loop has a resistance per unit length of $d R / d l=0.11$ Ω / m. A spatially uniform magnetic field points into the page. In the interval between $t=$ 0 and 10 s , the strength of this field varies according to the expression $B(t)=0.007 \mathrm{t}^{3}$ $\mathrm{T} / \mathrm{s}^{3}$.
(a) Calculate the magnitude of the induced EMF in the coil at $t=5 \mathrm{~s}$.

Area of the loop $A=\pi \mathrm{a}^{2}=3.14 *(0.35)^{2}=0.385 \mathrm{~m}^{2}$
If the field at a time t is B, then the flux through the loop will be given by

$$
\phi_{B}=N B A \cos \theta=-N B A \quad[\text { As the field is in }-\mathrm{z} \text { direction] }
$$

Hence the induced EMF is given by

$$
\begin{equation*}
E=-\frac{d \phi_{B}}{d t}=N A \frac{d B}{d t} \tag{1}
\end{equation*}
$$

Now the magnetic field is $B=0.007 * t^{3}$
Hence $\frac{d B}{d t}=0.007 * 3 t^{2}=0.021 * t^{2}$

And hence the induced EMF at time t is given by

$$
\mathrm{E}=21 * 0.385 * 0.021 \mathrm{t}^{2}=0.17 * \mathrm{t}^{2}
$$

And thus the induced EMF at $t=5 s$ will be

$$
\mathrm{E}=0.17 * 25=4.24 \mathrm{~V}
$$

(b) Calculate the current in the windings at $t=5 \mathrm{~s}$.

Length of the wire in the loop is given by

$$
I=2 \pi a * N=2 * 3.14 * 0.35 * 21=46.16 \mathrm{~m}
$$

Hence the resistance of the loop will be

$$
R=46.16 * 0.11=5.08 \Omega
$$

And hence the current in the loop will be

$$
I=E / R=4.24 / 5.08=0.835 A
$$

As the flux in negative z direction and increasing, according to Lenz law the induced current will be in such a direction that it will try to decrease the flux in that direction or the flux through the coil and hence field due to induced current will be in $+z$ direction. Hence using right hand rule we can say that the current will be in counter clock wise direction.
(c) In the time interval between 0 and 10 s , how much electrical charge passes any given point in the windings? (Give magnitude only.)

According to faraday's law of electromagnetic induction

$$
E=-\frac{d \phi}{d t}
$$

If the resistance of the loop is R then the current in the loop $\mathrm{I}=\mathrm{dq} / \mathrm{dt}$ is given by

$$
I=\frac{d q}{d t}=\frac{E}{R}=-\frac{1}{R} \frac{d \phi}{d t}
$$

Gives $d q=-\frac{1}{R} d \phi$
Hence magnitude of the charge flowing through the loop is given by

$$
\Delta q=\frac{\Delta \phi}{R}=\frac{N^{*} A * \Delta B}{R}
$$

Now in time $t=0$ to 10 s the field increases from 0 to $0.007 * 10^{3} \mathrm{~T}$
Hence we have

$$
\Delta q=\frac{21 * 0.385 * 7}{5.08}=11.14 . C
$$

