Q- Throughout space there is a uniform electric field in the $-y$ direction of strength $E=550$ $\mathrm{N} / \mathrm{C}$. There is no gravity. At $t=0$, a particle with mass $m=2 \mathrm{~g}$ charge $q=-11 \mu \mathrm{C}$ is at the origin moving with a velocity $v_{0}=45 \mathrm{~m} / \mathrm{sat}$ an angle $\theta=25^{\circ}$ above the $x$-axis.
(a) What is the magnitude of the force acting on this particle?

The force on the particle will be

$$
\mathrm{F}=\mathrm{q}^{*} \mathrm{E}=\left(-11^{*} 10^{-6}\right)^{*}(-550)=6.05^{*} 10^{-3} \mathrm{~N} \text { (in positive y direction) }
$$

(b) At $t=6 \mathrm{~s}$, what are the $x$ - and $y$-coordinates of the position of the particle?


Initial velocity in $x$ direction will be $v_{x}=v_{0}{ }^{*} \cos 25^{\circ}=45^{*} 0.906=40.78 \mathrm{~m} / \mathrm{s}$
As there is no force and acceleration on the particle in x direction the distance covered will be

$$
x=v^{*} t=40.78^{*} 6=244.7 \mathrm{~m}
$$

Initial velocity of the particle in $y$ direction will be $v_{y}=v_{0} * \sin 25^{\circ}=45^{*} 0.423=19.0 \mathrm{~m} / \mathrm{s}$
The acceleration of the particle in $+y$ direction will be $a_{y}=6.05^{*} 10^{-3} / 0.002=3.025 \mathrm{~m} / \mathrm{s}^{2}$ hence the distance covered in y direction in 6 secs will be

$$
y=v_{y} * t+1 / 2 a_{y} * t^{2}=114+54.45=168.45 \mathrm{~m}
$$

