Q- Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained (fixed) by rigid supports at A and E with their natural lengths as shown in the figure. Now forces of 60 kN and 40 kN are applied at points shown. Knowing that $E($ steel $)=200 \mathrm{GPa}$ and E (brass) $=105 \mathrm{GPa}$, determine
(a) the reaction at A and E
(b) the deflection of point C.

The forces applied produces the stress in the different parts of the system differently and these parts can be considered separately as parts $A B, B C$, $C D$ and $D E$.

The external forces in each part produce strain and hence give rise to compressive of tensile stress accordingly.
(a) The reactions and the corresponding change in
 lengths of different parts are shown in the diagrams bellow.

Considering the first part
Tensile stress $=\frac{R_{A}}{\pi r_{1}^{2}} \quad$ and strain $=\frac{\Delta L_{1}}{L_{1}}$
Hence according to hooks law stress $=E^{*}$ strain we have

$$
\frac{R_{A}}{\pi r_{1}^{2}}=E * \frac{\Delta L_{1}}{L_{1}}
$$

[r_{1} and r_{2} are radii of the two rods]
Gives $\Delta L_{1}=\frac{R_{A} * L_{1}}{\pi r_{1}^{2} E_{S}}=\frac{180 * 10^{-3} R_{A}}{3.14 * 0.02^{2} * 200 * 10^{9}}=7.166 * 10^{-10} * R_{A}$
Similarly for the other three part the change in their lengths can be given by

$$
\begin{aligned}
& \Delta L_{2}=-\frac{R_{B} L_{2}}{\pi r_{1}^{2} E_{S}}=-\frac{R_{B} 120 * 10^{-3}}{3.14 * 0.02^{2} * 2 * 10^{11}}=-4.777 * 10^{-10} R_{B}: \\
& \Delta L_{3}=-\frac{R_{C} L_{3}}{\pi r_{2}^{2} E_{B}}=-\frac{R_{C} * 100 * 10^{-3}}{3.14 * 0.015^{2} * 1.05 * 10^{11}}=-1.348 * 10^{-9} R_{C}: \\
& \Delta L_{4}=-\frac{R_{E} L_{4}}{\pi r_{2}^{2} E_{B}}=-\frac{R_{E} * 100 * 10^{-3}}{3.14 * 0.015^{2} * 1.05 * 10^{11}}=-1.348 * 10^{-9} R_{E}
\end{aligned}
$$

The negative signs are due to compressions.
Now as we know that the total length of the system does not change we have

$$
\Delta L_{1}+\Delta L_{2}+\Delta L_{3}+\Delta L_{4}=0
$$

Gives $7.166 * 10^{-10} R_{A}-4.777 * 10^{-10} R_{B}-1.348 * 10^{-9} R_{C}-1.348 * 10^{-9} R_{E}=0$
Now as we know that the net force at B is 60 KN hence

$$
\begin{align*}
& R_{A}+R_{B}=60 \mathrm{kN} \\
\text { Or } & R_{B}=60 \mathrm{kN}-R_{A} \tag{2}
\end{align*}
$$

As there is no external force at C

$$
\begin{array}{ll}
& -R_{B}+R_{C}=0 \\
\text { or } & R_{C}=R_{B}=60 \mathrm{kN}-R_{A} \tag{3}
\end{array}
$$

And for point D
$-R_{C}+R_{E}=40 \mathrm{kN}$
Or $\quad-\left(60 \mathrm{kN}-\mathrm{R}_{\mathrm{A}}\right)+\mathrm{R}_{\mathrm{E}}=40 \mathrm{kN}$
Or $\quad R_{E}=100 \mathrm{kN}-\mathrm{R}_{\mathrm{A}}$
Substituting the values of R_{B}, R_{C} and R_{E} in terms of R_{A} in equation (1) we have

$$
\begin{aligned}
7.166 * & 10^{-10} \mathrm{R}_{\mathrm{A}}-4.777 * 10^{-10} *\left(60 \mathrm{kN}-\mathrm{R}_{\mathrm{A}}\right) \\
& -1.348^{*} 10^{-9} *\left(60 \mathrm{kN}-\mathrm{R}_{\mathrm{A}}\right)-1.348^{*} 10^{-9} *\left(100 \mathrm{kN}-\mathrm{R}_{\mathrm{A}}\right)=0
\end{aligned}
$$

Or $\quad\left(7.166 * 10^{-10}+4.777 * 10^{-10}+1.348 * 10^{-9}+1.348 * 10^{-9}\right) \mathrm{R}_{\mathrm{A}}=$

$$
4.777 * 10^{-10} * 60000+1.348 * 10^{-9} * 60000+1.348 * 10^{-9} * 100000
$$

Or $\quad 38.903 R_{A}=2443420$
Or $\quad \mathbf{R}_{\mathbf{A}}=62808 \mathbf{N}$
And hence

$$
\mathbf{R}_{\mathrm{E}}=100000-\mathbf{R}_{\mathrm{A}}=37192 \mathrm{~N}
$$

(b) Substituting the values of R_{A} in equations 2 and 3 we get

$$
R_{B}=R_{C}=60000-62808=-2808 N
$$

This negative sign show that the directions of forces are opposite to that we have taken means the first three parts get elongated and only last part is compressed.

The change in lengths of different parts is given by

$$
\begin{aligned}
& \Delta L_{1}=7.166 * 10^{-10} * R_{A}=7.166 * 10^{-10} * 62808=4.5 * 10^{-5} \mathrm{~m} \\
& \Delta L_{2}=-4.777 * 10^{-10}(-2808)=1.34 * 10^{-6} \mathrm{~m} \\
& \Delta L_{3}=-1.348 * 10^{-9}(-2808)=3.78 * 10^{-6} \mathrm{~m} \\
& \Delta L_{4}=-1.348 * 10^{-9} * 37192=-5.01 * 10^{-5} \mathrm{~m}
\end{aligned}
$$

The last one is negative means compression.
Hence the displacement of point C will be

$$
\mathrm{x}_{\mathrm{C}}=\Delta \mathrm{L}_{1}+\Delta \mathrm{L}_{2}=(4.5+0.134) * 10^{-5}=4.634 * 10^{-5} \mathbf{~ m}
$$

