Q- Six point charges, four positive $(+q)$ and two negative $(-q)$, are fixed at the positions shown in the $x-y$ plane; $q=2 \times 10^{-6} \mathrm{C}$ and $a=0.88 \mathrm{~m}$. A test charge $Q=1.5 \times 10^{-6} \mathrm{C}$ is at the origin. Find the x - and y-components of the total force on Q.

The force on Q due to two +q charges on the y axis will be equal in magnitude and opposite in direction hence will result in zero.
The magnitude of the force due to the two charges on the x axis will be equal and given by

$$
\frac{Q q}{4 \pi \in_{0} a^{2}}
$$

As the force due to +q is repulsive and that due to -q is attractive, both will be in the same - x direction and hence their resultant is given by

$$
\vec{F}_{1}=2 * \frac{Q q}{4 \pi \in_{0} a^{2}}(-\hat{i})
$$

The distance of Q from both the rest two charges on the line bisecting the angle between the axes is equal to $a \sqrt{ } 2$ and these two charges exerts forces equal in magnitude given by

$$
\frac{Q q}{4 \pi \in_{0} 2 a^{2}}
$$

As the +q will repel Q and -q will attract Q , the direction of both force will make 45° with x axis and hence magnitude of their resultant is given by

$$
F_{2}=2 * \frac{Q q}{4 \pi \in_{0} 2 a^{2}}=\frac{Q q}{4 \pi \epsilon_{0} a^{2}}
$$

This force can be written in component form as

$$
\vec{F}_{2}=\frac{Q q}{4 \pi \in_{0} a^{2}}\left(\cos 45^{0} \hat{i}+\sin 45^{0} \hat{j}\right)=\frac{Q q}{4 \sqrt{2} * \pi \in_{0} a^{2}}(\hat{i}+\hat{j})
$$

Hence the resultant of the all forces on Q will be given by

$$
\begin{aligned}
& \qquad \vec{F}=\vec{F}_{1}+\vec{F}_{2}=2 * \frac{Q q}{4 \pi \in_{0} a^{2}}(-\hat{i})+\frac{Q q}{4 \sqrt{2} * \pi \in_{0} a^{2}}(\hat{i}+\hat{j}) \\
& \text { Or } \quad \vec{F}=\frac{Q q}{4 \pi \in_{0} a^{2}}\left[2(-\hat{i})+\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})\right] \\
& \text { Or } \quad \vec{F}=\frac{Q q}{4 \pi \in_{0} a^{2}}\left[\left(-2+\frac{1}{\sqrt{2}}\right) \hat{i}+\frac{1}{\sqrt{2}} \hat{j}\right] \\
& \text { Or } \quad \vec{F}=\frac{\left(9 * 10^{9}\right)\left(2 * 10^{-6}\right)\left(1.5 * 10^{-6}\right)}{0.88^{2}}[-1.293 * \hat{i}+0.71 \hat{j}] \\
& \text { Or } \quad \vec{F}=0.0349 *[-1.293 * \hat{i}+0.71 * \hat{j}]=-0.045 * \hat{i}+0.025 * \hat{j} \\
& \boldsymbol{F}_{x}=\mathbf{- 0 . 0 4 5} \mathbf{~ N} \\
& \boldsymbol{F}_{\boldsymbol{y}}=\mathbf{0 . 0 2 5} \mathbf{~ N}
\end{aligned}
$$

