Q- Figure shows a snapshot graph at $t=0 \mathrm{~s}$ of a 30.0 Hz wave traveling to the left. Each interval on the vertical axis corresponds to 5 mm .

From the graph, we get
$A=$ two vertical intervals $=2 * 5 \mathrm{~mm}=10 \mathrm{~mm}$
The wavelength is the distance between two nearest points oscillating in same phase and is equal to

$$
\lambda=\text { two horizontal intervals }=2 * 1 \mathrm{~m}=2 \mathrm{~m}
$$

(a) What is the wave speed?

Snapshot graph at $t=0 \mathrm{~s}$

The wave speed is given by

$$
\mathrm{C}=\mathrm{n} * \lambda=30 * 2=\mathbf{6 0} \mathbf{~ m} / \mathbf{s}
$$

(b) What is the phase constant of the wave?

The wave displacement of any particle of the medium is given by the equation

$$
D=A \sin (k x+\omega t+\phi)
$$

From the graph, at $t=0$ and $x=0$ the displacement of the particle is one vertical interval or $A / 2$. Hence, we have

$$
A / 2=A \sin (0+0+\phi)
$$

Gives the phase constant $\phi=\sin ^{-1}(1 / 2)=30^{\circ}$ or $\pi / 6=0.5236 \mathrm{rad}$
(c) Write the displacement equation for this wave. Use "x" for x and " m " for meters.

As we know that

$$
\mathrm{K}=2 \pi / \lambda=2 \pi / 2=3.14 \mathrm{~m}^{-1}
$$

And

$$
\omega=2 \pi / \mathrm{T}=2 \pi * \mathrm{n}=2 * 3.14 * 30=188.4 \mathrm{rad} / \mathrm{s}
$$

Thus, the equation for the wave can be written as

$$
D(x, t)=A \sin (K x+\omega t+\phi)
$$

Substituting the values, we get the equation for the wave as

$$
D(x, t)=(10 \mathrm{~mm}) \sin (3.14 x+188.4 t+0.5236)
$$

