Q- An electromagnetic wave has a frequency of 110 MHz and is traveling in a vacuum. The magnetic field is given by $\overrightarrow{\mathbf{B}}(z, t)=\left(2.00 \times 10^{-8} \mathrm{~T}\right) \cos (k z-\omega t) \hat{\mathbf{i}}$.
(a) Find the wavelength and the direction of propagation of this wave.

The velocity of the electromagnetic waves is equal to the velocity of light $\mathrm{c}=3^{*} 10^{8} \mathrm{~m} / \mathrm{s}$.
The frequency n, wavelength λ and the velocity c of a wave is related by $c=n \lambda$, hence the wavelength of the wave is given by

$$
\lambda=c / n=3^{*} 10^{8} /\left(110^{*} 10^{6}\right)=2.73 \mathrm{~m}
$$

The phase angle of the wave at any instant of time is decreasing in the direction of wave motion. Here with increase in z the phase angle increases and thus we can say that the wave is traveling in negative z direction.
(b) Find the electric field vector $\overrightarrow{\mathrm{E}}(z, t)$.

The electric and magnetic fields are in phase and are related as E = c*B we get the amplitude of electric field as

$$
\mathrm{E}_{\mathrm{m}}=\mathrm{c}^{*} \mathrm{~B}_{\mathrm{m}}=\left(3^{*} 10^{8}\right)^{*}\left(2.00 * 10^{-8}\right)=6.00 \mathrm{~V} / \mathrm{m}
$$

The wave number k is given by $\mathrm{k}=2 \pi / \lambda=2 * 3.1415 / 2.73=2.30 \mathrm{~m}^{-1}$
And the angular frequency is given by $\omega=2 \pi \mathrm{n}=2 * 3.1415 * 110 * 10^{6}$
Or $\quad \omega=0.691 * 10^{9} \mathrm{~s}^{-1}=0.691 \mathrm{~ns}^{-1}$
Hence the electric field vector which is perpendicular to the magnetic field and direction of wave motion is given by

$$
\overrightarrow{\mathbf{E}}(z, t)=(6.00 \mathrm{~V} / \mathrm{m}) \cos (2.30 z-0.691 t) . \hat{\mathbf{j}}
$$

(c) Determine the Poynting vector.

The Poynting vector is given by

$$
\begin{aligned}
& \overrightarrow{\mathbf{s}}(z, t) & =\frac{1}{\mu_{0}}(\vec{E} \times \vec{B}) \\
\text { Or } & \overrightarrow{\mathbf{s}}(z, t) & =\frac{1}{\mu_{0}} 6.00 * 2 * 10^{-8} \cos ^{2}(2.30 z-0.691 t)(\hat{j} \times \hat{i}) \\
\text { Or } & \overrightarrow{\mathbf{s}}(z, t) & =\frac{10^{7}}{4 \pi} * 6.00 * 2 * 10^{-8} \cos ^{2}(2.30 z-0.691 t)(\hat{j} \times \hat{i}) \\
\text { Or } & \overrightarrow{\mathbf{s}}(z, t) & =0.0955 \cos ^{2}(2.30 z-0.691 t)(-\hat{k})
\end{aligned}
$$

(d) Using this Poynting vector, find the intensity of the wave.

The time average of magnitude of Poynting vector S gives the intensity I of the wave. As the time average of $\cos ^{2}(2.30 z-0.691 t)$ will be $1 / 2$, the intensity of the wave is given by

$$
\mathrm{I}=0.0955 / 2 \mathrm{~W} / \mathrm{m}^{2}=47.75 \mathrm{~mW} / \mathrm{m}^{2}
$$

