Q- Electrons with a speed of $2.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ pass through a double-slit apparatus. Interference fringes are detected with a fringe spacing of 1.6 mm .
(a) What will the fringe spacing be if the electrons are replaced by neutrons with the same speed?

The wave length associated with the motion of electron is given by

$$
\lambda_{e}=\frac{h}{m_{e} v}
$$

Now as we know that the fringe spacing b in a double slit experiment for wave of wavelength λ is given by

$$
\beta=\frac{D \lambda}{d}
$$

Here D is the distance of screen from the sources and d is the source spacing.
Hence the fringe width for the electrons is given by

$$
\begin{equation*}
\beta_{e}=\frac{D * h}{d * m_{e} * v} \tag{1}
\end{equation*}
$$

And similarly, the fringe width for neutrons in the same experiment with the same speed is given by

$$
\begin{equation*}
\beta_{n}=\frac{D * h}{d * m_{n} * v} \tag{2}
\end{equation*}
$$

Dividing the equation (2) by equation (1) we get

$$
\begin{aligned}
\frac{\beta_{n}}{\beta_{e}} & =\frac{m_{e}}{m_{n}} \\
\beta_{n} & =\frac{m_{e}}{m_{n}} \beta_{e}=\frac{9.11 * 10^{-31}}{1.67 * 10^{-27}} * 1.6=8.73 * 10^{-4} \mathrm{~mm} \\
\text { Gives } & \mathbf{0 . 8 7 3} \mathbf{~ m}
\end{aligned}
$$

(b) What speed must neutrons have to produce interference fringes with a fringe spacing of 1.6 mm ?

If the speeds of the electrons and the neutrons are different in such a way that the fringe spacing is the same then equating equation (1) and (2) we get

$$
\begin{aligned}
& \beta=\frac{D * h}{d * m_{e} * v_{e}}=\frac{D * h}{d * m_{n} * v_{n}} \\
& v_{n}=\frac{m_{e} * v_{e}}{m_{n}}=\frac{9.11 * 10^{-31}}{1.67 * 10^{-27}} * 2.5 * 10^{6}=1.36 * 10^{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$1.36 * 10^{3} \mathrm{~m} / \mathrm{s}$

