Q- Four charges $q_{1}=q_{3}=-q$ and $q_{2}=q_{4}=+q$, where $q=7 \mu \mathrm{C}$, are fixed at the corners of a square with sides $a=2.2 \mathrm{~m}$.
(a) Calculate the x - and y-components of the net electric field at the midpoint M of the bottom side of the square.

The charges q_{1} and q_{4} constitutes a dipole of dipole moment P $=q^{*} a$ and M is on the perpendicular bisector of it, hence the magnitude of the field at M due to this dipole will be given by the formula

$$
\begin{aligned}
E_{1} & =\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q a}{\left[a^{2}+(a / 2)^{2}\right]^{3 / 2}}=\frac{8 * q}{4 \pi \in_{0} a^{2} * 5 \sqrt{5}} \\
\text { Or } \quad E_{1} & =\frac{\left(9 * 10^{9}\right) * 8\left(7 * 10^{-6}\right)}{(2.2)^{2} * 5 \sqrt{5}}=9.314 * 10^{3} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

This field is in negative x direction.
The field due to q_{2} and q_{3} will be equal in magnitude and both are in positive x direction and their resultant will be

$$
E_{2}=2 * \frac{q}{4 \pi \epsilon_{0}(a / 2)^{2}} .=\frac{8 q}{4 \pi \epsilon_{0} a^{2}}=\frac{\left(9 * 10^{9}\right) * 8\left(7 * 10^{-6}\right)}{(2.2)^{2}}=1.04 * 10^{5} \mathrm{~N} / \mathrm{C}
$$

This field will be in positive x direction.
As fields E_{1} and E_{2} both are in x direction the x component of the total field at M will be

$$
104.1 * 10^{3}-9.314 * 10^{3}=94.79 * 10^{3} \mathrm{~N} / \mathrm{C}
$$

And y component of the field at M will be zero.
(b) Find the total force exerted on q_{4} by the charges q_{1}, q_{2}, and q_{3} : Force on q_{4} due to q_{1} will be

$$
\vec{F}_{1}=\frac{q^{2}}{4 \pi \in_{0} a^{2}}(-\hat{i})
$$

Force on q_{4} due to q_{2} will be

$$
\vec{F}_{2}=\frac{q^{2}}{4 \pi \in_{0} 2 a^{2}}\left(\cos 45^{0} \hat{i}+\sin 45^{0} \hat{j}\right)=\frac{q^{2}}{4 \pi \in_{0} 2 \sqrt{2} * a^{2}}(\hat{i}+\hat{j})
$$

Force on q_{4} due to q_{3} will be

$$
\vec{F}_{3}=\frac{q^{2}}{4 \pi \in_{0} a^{2}}(-\hat{j})
$$

Hence the total force will be

$$
\begin{aligned}
\quad \vec{F} & =\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=\frac{q^{2}}{4 \pi \epsilon_{0} a^{2}}\left(\frac{1}{2 \sqrt{2}}-1\right)(\hat{i}+\hat{j}) \\
\text { Or } \quad \vec{F} & =\frac{\left(9 * 10^{9}\right)\left(7 * 10^{-6}\right)^{2}}{2.2^{2}}(-0.6464)(\hat{i}+\hat{j})=-0.0589(\hat{i}+\hat{j})
\end{aligned}
$$

Hence the magnitude of the force $\mathrm{F}=0.589 * \sqrt{2}=\mathrm{N}$ and its direction will bisect the angle between negative x and negative y axes.

