Q- A Star S have two planets A and B. Planet A has average orbital radius three times as big as planet B. If planet A orbits S in 2 earth years,
(a) How long is a year for the resident of planet B
(b) What is linear orbital speed of planet B
(a) According to the Kepler's laws of planetary motion the square of time-period of the planets are directly proportional to the cube of the average distance from the stars hence

$$
\begin{equation*}
\frac{T_{1}^{2}}{T_{2}^{2}}=\frac{R_{1}^{3}}{R_{2}^{3}} \tag{1}
\end{equation*}
$$

Here period of revolution of $B \quad T_{1}=$?
Radius of orbit of $B \quad R_{1}=R$
Period of rev. of $A \quad T_{2}=2$ earth years Radius of orbit of $A \quad R_{2}=3 R$

Substituting in equation 1 we have

$$
\frac{T_{1}^{2}}{2^{2}}=\frac{R^{3}}{(3 R)^{3}}
$$

Or $\quad T_{1}^{2}=\frac{4}{27}$
Or $\quad \mathrm{T}_{1}=\frac{2}{3 \sqrt{3}}=0.385$ Earth years
The year of the residents of B is 0.385 earth years

$$
\begin{aligned}
& =0.385 * 365=140.5 \text { days } \\
& =140.53 * 86400=1.214^{*} 10^{7} \mathrm{~s}
\end{aligned}
$$

(b) The average orbital velocity of B is given by

$$
\mathrm{v}_{0}=\omega^{*} \mathrm{R}=2 \pi \mathrm{R} / \mathrm{T}_{1}
$$

Here ω is the angular velocity, R is the orbital radius and T_{1} is its time-period.
Hence the orbital velocity of B will be

$$
v_{0}=2^{*} 3.14^{*}\left(1^{*} 10^{11} \mathrm{~m}\right) /\left(1.214^{*} 10^{7} \mathrm{~s}\right)=5.173^{*} 10^{4} \mathrm{~m} / \mathrm{s}
$$

