Q- A wire frame in the shape of an equilateral triangle of side $d=8 \mathrm{~cm}$, carries current $i=$ 0.25 A. This frame is in a region of space that contains a constant magnetic field of magnitude $B=1.3 \mathrm{~T}$, normal to the plane of the frame and the frame is in stable equilibrium. What is the work you would have to do to rotate the frame 180° so that it is again normal to the field? The problem is based on the phenomenon of the rotation of a dipole in a field.
When a current carrying loop is placed in a uniform magnetic field it may experience a torque. The torque is given by

$$
\vec{\tau}=\vec{p}_{B} \times \vec{B}
$$

Magnitude of which is given by

$$
\tau=p_{B} \cdot B \cdot \sin \theta
$$

Here p_{B} is the magnetic dipole moment of the loop, θ is the angle between the field and the dipole and B is the magnetic field. For $\theta=0$ the torque will be equal to zero and the dipole is in stable equilibrium. The torque on the dipole due to magnetic field acts in such a direction that it tries to bring the dipole in the direction of the field. To keep the dipole making angle θ with the field, we must apply a torque equal to τ but in opposite direction. Now for a small rotation from angle θ to $\theta+d \theta$ the work to be done by the torque applied will be

$$
d W=\tau . d \theta
$$

Thus, if the dipole is rotated from an angle θ_{1} to θ_{2} then the work done is given by

$$
\begin{equation*}
W=\int_{\theta 1}^{\theta 2} \tau \cdot d \theta=\int_{\theta 1}^{\theta 2} p_{B} B \sin \theta \cdot d \theta=-p_{B} B\left(\cos \theta_{2}-\cos \theta_{1}\right) \tag{1}
\end{equation*}
$$

The magnetic dipole moment of a loop is given by the product of its area and current in it hence the dipole moment of the equilateral triangle carrying current I is given by

$$
\mathrm{p}_{\mathrm{B}}=I *\left(\frac{\sqrt{3}}{4}\right) d^{2}
$$

Hence the work done to rotate the dipole from $\theta=0$ to $\theta=180^{\circ}$ is given by using equation 1 as

$$
\begin{array}{rlrl}
& & W & =-p_{B} B\left(\cos \theta_{2}-\cos \theta_{1}\right) \\
\text { Or } & W & =-I * \frac{\sqrt{3}}{4} d^{2} B\left(\cos 180^{0}-\cos 0\right) \\
\text { Or } & W & =-0.25 * \frac{\sqrt{3}}{4}(0.08)^{2} * 1.3 *(-1-1) \\
\text { Or } & W & =1.8 * 10^{-3} \mathrm{~J}
\end{array}
$$

