Q- The gravitational force exerted on a solid object is 5.00 N . When the object is suspended from a spring scale and submerged in water, the scale reads 3.50 N . Find the density of the object.

This problem is based on Archimedes' Principle.
If the mass of the object is m then
Weight of the body in air $\mathrm{W}=\mathrm{mg}=5.00 \mathrm{~N}$
Weight of the body when submerged in water $\mathrm{W}^{\prime}=3.50 \mathrm{~N}$
Apparent loss in weight of the object = W - W'
Hence the weight of displaced water will also be $\mathrm{W}_{\mathrm{w}}=\mathrm{W}-\mathrm{W}^{\prime}$
Now if V be the volume of the object, then the volume of displaced water will also be V and hence

Mass of the displaced water $=\mathrm{V}^{*} \rho_{\mathrm{w}}$
Here ρ_{w} is the density of water
And the weight of the displaced water $\mathrm{W}_{\mathrm{w}}=\mathrm{V}^{*} \rho_{\mathrm{w}}{ }^{*} \mathrm{~g}$
From equation 1 and 2 we have

$$
\mathrm{W}-\mathrm{W}^{\prime}=\mathrm{V}^{*} \rho_{\mathrm{w}} * g
$$

Gives $\mathrm{V}=\left(\mathrm{W}-\mathrm{W}^{\prime}\right) / \rho_{\mathrm{w}}{ }^{*} \mathrm{~g}$
Now as we know that the weight of an object of mass m is mg hence the mass of the object

$$
\mathrm{m}=\mathrm{W} / \mathrm{g}
$$

Hence the density of the object = mass/volume
or $\quad \rho=\frac{m}{V}=\frac{\frac{W}{g}}{\frac{W-W^{\prime}}{\rho_{W} * g}}$
Gives $\rho=\frac{W}{W-W^{\prime}} \rho_{W}$
This is the formula based on Archimedes' Principle
Substituting the values we have

$$
\rho=\frac{W}{W-W^{\prime}} \rho_{W}=\frac{5.00}{5.00-3.50} * 1 * 10^{3}=3.33 * 10^{3} \mathrm{Kg} / \mathrm{m}^{3}
$$

