Q- A cat rides a merry-to-round turning in circular motion with uniform speed. At time $\mathrm{t}_{1}=$ 2.00s, the cat's velocity is $\mathrm{V}_{1}=3.0 \mathrm{~m} / \mathrm{s} \mathrm{i}+4.0 \mathrm{~m} / \mathrm{s} \mathrm{j}$, measured on a horizontal $\mathrm{x}-\mathrm{y}$ coordinate system. At $\mathrm{t}_{2}=5.00 \mathrm{~s}$, its velocity is $\mathrm{V}_{2}=(-3.0 \mathrm{~m} / \mathrm{s}) \mathrm{i}+(-4.0 \mathrm{~m} / \mathrm{s}) \mathrm{j}$. What are the
(a) magnitude of the cat's centripetal acceleration

The centripetal acceleration of the particle moving on a circular path of radius R with speed v is given by

$$
a=\frac{v^{2}}{R}=\omega^{2} R=v \omega \quad[\text { as } v=\omega \mathrm{R}]
$$

The speed of the cat at any instant will be

$$
|\vec{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{3.0^{2}+4.0_{y}^{2}}=\sqrt{9+16}=5 \mathrm{~m} / \mathrm{s}
$$

As the direction of the x component and y components of the velocities are just reversed in time $\mathrm{t}_{2}-\mathrm{t}_{1}=5.00-2.00=3.00 \mathrm{~s}$ (negative signs) we can say that in this time the cat makes half rotation and hence the time required for full rotation i.e. the time-period is 6.00 s . Thus, the angular velocity of the cat can be given by

$$
\omega=\frac{2 \pi}{T}=\frac{2 * 3.14}{6.00}=1.047 \mathrm{rad} / \mathrm{s}
$$

Hence the centripetal acceleration of the cat will be

$$
a=v^{*} \omega=5.0 * 1.047=5.235 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) the cat's average acceleration during the time interval $t_{2}-t_{1}$?

The average acceleration of the cat can be given by

$$
\langle a\rangle=\frac{\Delta \vec{v}}{\Delta t}=\frac{\vec{v}_{2}-\vec{v}_{1}}{t_{2}-t_{1}}=\frac{(-3.0 * \hat{i}-4 \hat{j})-(3.0 * \hat{i}+4.0 \hat{j})}{5.00-2.00}=\frac{-6 \hat{i}-8 \hat{j}}{3}=-2 \hat{i}-\frac{8}{3} \hat{j} \mathrm{~m} / \mathrm{s}^{2}
$$

Hence the magnitude of the average acceleration is

$$
a=\sqrt{2^{2}+\left(\frac{8}{3}\right)^{2}}=3.33 \mathrm{~m} / \mathrm{s}^{2}
$$

and its direction makes angle

$$
\theta=\tan ^{-1}\left(\frac{-8 / 3}{-2}\right)=\tan ^{-1}(1.33)=53^{0}(\text { with negative } \times \text { axis, third quadrant })
$$

