Q- Three astronauts, propelled by jet backpacks, push and guide a 195 kg asteroid toward a processing dock. One astronaut exerts a force of $30 \mathrm{~N}, 30^{\circ}$ from positive x -axis towards positive y direction, second exerts a force of 55 N along the x -axis and third astronaut exerts a force of $41 \mathrm{~N} 60^{\circ}$ from the positive x-axis towards negative y direction.
(a) What is the asteroid's acceleration in unit-vector notation?
(b) What is the asteroid's acceleration as a magnitude and direction?

The first force is 32 N (30 N in question) making angle 30° with x axis hence in component form can be written as

$$
\begin{array}{ll}
& \vec{F}_{1}=32 * \cos 30^{\circ} \hat{i}+32 * \sin 30^{0} \hat{j} \\
\text { Or } & \vec{F}_{1}=32 * 0.866 * \hat{i}+32 * 0.500 * \hat{j} \\
\text { Or } & \vec{F}_{1}=27.7 * \hat{i}+16.0 * \hat{j} \tag{1}
\end{array}
$$

Second force is along x direction and hence its component
 in y direction will be zero and is given by

$$
\begin{array}{ll}
& \vec{F}_{2}=55 * \cos 0^{0} \hat{i}+55 * \sin 0^{0} \hat{j} \\
\text { Or } & \vec{F}_{2}=55 * 1 * \hat{i}+55 * 0 * \hat{j} \\
\text { Or } & \vec{F}_{2}=55 * \hat{i} \tag{2}
\end{array}
$$

And similarly, the third force is given by

$$
\begin{array}{ll}
& \vec{F}_{3}=41 * \cos \left(-60^{0}\right) * \hat{i}+41 * \sin \left(-60^{0}\right) * \hat{j} \\
\text { Or } & \vec{F}_{3}=41 * \cos \left(60^{0}\right) * \hat{i}-41 * \sin \left(60^{0}\right) * \hat{j} \\
\text { Or } & \vec{F}_{3}=41 * 0.500 * \hat{i}-41 * 0.866^{*} \hat{j} \\
\text { Or } & \vec{F}_{3}=20.5 * \hat{i}-35.5 * \hat{j}
\end{array}
$$

The resultant of the three force is given by adding the three equations as

$$
\vec{F}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=(27.7 * \hat{i}+16.0 * \hat{j})+55 * \hat{i}+(20.5 * \hat{i}-35.5 * \hat{j})
$$

Or $\quad \vec{F}=(27.7+55+20.5) * \hat{i}+(16.0+0-35.5) * \hat{j}$
Or $\quad \vec{F}=103.2 * \hat{i}-19.5 * \hat{j} \mathrm{~N}$
(a)

The acceleration of the asteroid is given by using Newton's second law of motion as

$$
\vec{a}=\frac{\vec{F}}{m}
$$

Or $\quad \vec{a}=\frac{103.2 * \hat{i}-19.5 * \hat{j}}{195}=0.53 * \hat{i}-0.10 \hat{j}$
Or $\quad \vec{a}=0.53 * \hat{i}-0.10 \hat{j} \mathrm{~m} / \mathrm{s}$
(b)

The magnitude of the acceleration is given by

$$
|\vec{a}|=a=\sqrt{a_{x}^{2}+a_{5}^{2}}=(0.53)^{2}+(-0.10)^{2}=0.539 \approx 0.54 \mathrm{~m} / \mathrm{s}
$$

And the direction of the acceleration is given by the angle it makes with positive x direction and is given by

$$
\tan \theta=\frac{a_{y}}{a_{x}}=\frac{-0.10}{0.53}=-0.1887
$$

Gives $\theta=-10.68^{0}$
Hence the resultant acceleration is $0.54 \mathrm{~m} / \mathrm{s}$ in the direction making angle -10.68^{0} with positive x axis.

