Q- Light of wavelength $\lambda=450 \mathrm{~nm}$ illuminates two slits as shown. Slit A has a larger opening than slit B. The center of slit A is at $y=0$, and the center of slit B is at $y=d=0.1 \mathrm{~cm}$. The screen is $L=1 \mathrm{~m}$ away from the plane of the slits. When slit A is open and slit B is closed, the light intensity on the screen is $I_{A}=19 \mathrm{~W} / \mathrm{m}^{2}$. When slit B is open and slit A is closed, the light intensity on the screen is $I_{B}=9 \mathrm{~W} / \mathrm{m}^{2}$. When both slits are open and ignoring diffraction, what is the ratio between the minimum and maximum intensities on the screen, $I_{\min }$ and $I_{\max }$?

As the intensity of a wave is proportional to the square of amplitude, in interference of two waves the resulting intensity at a point is given by the formula

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+2 * \sqrt{ }\left(\mathrm{I}_{1} \mathrm{I}_{2}\right) * \cos \varphi \text { where } \varphi \text { is the phase difference at that point. }
$$

Thus, for the maximum, intensity $\varphi=0$ we have

$$
I_{\max }=\mathrm{I}_{1}+\mathrm{I}_{2}+2^{*} \sqrt{ }\left(\mathrm{I}_{1} \mathrm{I}_{2}\right)=19+9+2^{*} \sqrt{ }(19 * 9)=54.15 \mathrm{~W} / \mathrm{m}^{2}
$$

And for the minimum, intensity $\varphi=\Pi$ we have

$$
I_{\text {min }}=I_{1}+I_{2}-2 * \sqrt{ }\left(\mathrm{I}_{1} \mathrm{I}_{2}\right)=19+9-2 \sqrt{ }(19 * 9)=1.85 \mathrm{~W} / \mathrm{m}^{2}
$$

Hence the ratio will be

$$
I_{\min } / I_{m a}=1.85 / 54.15=0.034
$$

