physics helpline

Learn basic concepts of physics through problem solving

Q- A traffic light weighing 122N hangs from a cable tied to two other cables fastened to a support. The upper cables make angles 37° and 53° with the horizontal. Find the tension in the cables.

The weight W of the light acts downwards and thus for equilibrium the tension in the lower cable T_1 must by equal and opposite to it. Thus the magnitude of the tension $T_1 = 122 \text{ N}$.

Resolving tensions in the other two cables horizontally and as the junction point is in equilibrium, the net horizontal force must be zero. Thus, we get

$$T_3 \cos 53^0 - T_2 \cos 37^0 = 0$$

- Or $T_3 = T_2 * \frac{\cos 37^0}{\cos 53^0}$
- Or $T_3 = T_2 * \frac{4}{5} * \frac{5}{3}$
- Or $T_3 = T_2 * \frac{4}{2}$ ------ (1)

similarly resolving tensions in the other two cables vertically and as the junction point is in equilibrium, the net vertical force must be zero. Thus, we get

$$T_3 \sin 53^0 + T_2 \sin 37^0 - T_1 = 0$$

Or
$$T_3 * \frac{4}{5} + T_2 * \frac{3}{5} = 122 N$$

Substituting the value of T_3 from equation we get

$$T_2 * \frac{4}{3} * \frac{4}{5} + T_2 * \frac{3}{5} = 122 N$$

Or $T_2 = \frac{3}{5} * 122 = 73.2 N$

Thus $T_3 = T_2 * \frac{4}{3} = 73.2 * \frac{4}{3} = 97.6 N$