Q- A traffic light weighing 122 N hangs from a cable tied to two other cables fastened to a support. The upper cables make angles 37° and 53° with the horizontal. Find the tension in the cables.

The weight W of the light acts downwards and thus for equilibrium the tension in the lower cable T_{1} must by equal and opposite to it. Thus the magnitude of the tension $\mathbf{T}_{\mathbf{1}}=\mathbf{1 2 2} \mathbf{N}$.

Resolving tensions in the other two cables horizontally and as the junction point is in equilibrium, the net horizontal force must be zero. Thus, we get
$T_{3} \cos 53^{0}-T_{2} \cos 37^{0}=0$

Or $\quad T_{3}=T_{2} * \frac{\cos 37^{\circ}}{\cos 53^{\circ}}$
Or $\quad T_{3}=T_{2} * \frac{4}{5} * \frac{5}{3}$
Or $\quad T_{3}=T_{2} * \frac{4}{3}$
similarly resolving tensions in the other two cables vertically and as the junction point is in equilibrium, the net vertical force must be zero. Thus, we get
$T_{3} \sin 53^{0}+T_{2} \sin 37^{0}-T_{1}=0$
Or $\quad T_{3} * \frac{4}{5}+T_{2} * \frac{3}{5}=122 \mathrm{~N}$
Substituting the value of T_{3} from equation we get

$$
T_{2} * \frac{4}{3} * \frac{4}{5}+T_{2} * \frac{3}{5}=122 \mathrm{~N}
$$

Or $\quad \boldsymbol{T}_{2}=\frac{3}{5} * 122=73.2 \mathrm{~N}$
Thus $\boldsymbol{T}_{3}=T_{2} * \frac{4}{3}=73.2 * \frac{4}{3}=97.6 \mathrm{~N}$

