Q- A riverside warehouse has two open doors and its walls are lined with sound absorbing material. A boat on the river sounds its horn. To a person A on the perpendicular bisector of the doors, at a distance $D=150 \mathrm{~m}$ from the doors, sound is loud and clear while to a person $B, x=30 \mathrm{~m}$ from A sideways, sound is barely audible. Assuming the person B is at the position of the first minimum, determine the distance between the doors, center to center, if the principle wavelength of the sound wave is 3.00 m .

Let the distance between the doors be ' d '. The central maximum is at A and the first minima is at position of B hence the path difference between the two waves at B must be $\lambda / 2$.

Now for $D \gg d$, the path difference $S_{2} M$ between the waves is given by

$$
\begin{aligned}
\delta & =d^{*} \sin \theta \\
\text { Or } \quad \frac{\lambda}{2} & =d * \sin \theta
\end{aligned}
$$

and as the angle θ is small then we can write $\sin \theta=\tan \theta$ and it the distance of the point from the bisector be x and from the source is D, then we can write

$$
\sin \theta=x / D
$$

and the path difference at a point distance x from the bisector will be

$$
\begin{aligned}
& \frac{\lambda}{2}=d * \frac{x}{D} \\
& d=\frac{D \lambda}{2 x}
\end{aligned}
$$

or $\quad d=\frac{150 * 3}{2 * 30}=7.5 \mathrm{~m}$

