Q-A steel shaft (density $=8050 \mathrm{~kg} / \mathrm{m}^{3}$) is 2 m long and is accelerated from rest to 400 rpm in 6 seconds by a torque of 100 Nm . Determine the max diameter of the shaft.

Let the radius of the shaft be R
Length L (= 2m)
Density of steel $\rho=8050 \mathrm{~kg} / \mathrm{m}^{3}$
The volume of the shaft $=\pi R^{2 *} \mathrm{~L}$
And hence its mass will be $m=\pi R^{2 *} L^{*} \rho$
Now the moment of inertia of the shaft (cylindrical) is given by

$$
\begin{equation*}
I=\frac{1}{2} m R^{2}=\frac{1}{2}\left(\pi R^{2} L \rho\right) R^{2}=\frac{1}{2}\left(\pi R^{4} L \rho\right) \tag{1}
\end{equation*}
$$

Now
Initial angular velocity of the shaft

$$
\omega_{0}=0
$$

Final angular velocity of the shaft
$\omega=400 \mathrm{rpm}=400 * 2 \pi / 60=40 \pi / 3$ radians $/ \mathrm{s}$
Time interval
$\Delta t=6 \mathrm{sec}$.
Hence the angular acceleration required is given by

$$
\begin{equation*}
\alpha=\frac{\Delta \omega}{\Delta t}=\frac{\omega-\omega_{0}}{\Delta t}=\frac{40 \pi / 3}{6}=\frac{20 \pi}{9} \mathrm{rad} / \mathrm{s}^{2} \tag{2}
\end{equation*}
$$

Now like the equation of translational motion [F = ma] we can write the equation for rotational motion for the shaft as

> Torque = Moment of inertia*angular acceleration

Or $\quad \tau=I * \alpha$

Using equation 1 and 2 the equation transforms to

$$
\tau=\frac{1}{2}\left(\pi R^{4} L \rho\right) * \frac{20 \pi}{9}
$$

Gives $\quad R=\left(\frac{9 \tau}{10 \pi^{2} L \rho}\right)^{\frac{1}{4}}$
Substituting the numerical values, we have

$$
R=\left(\frac{9 * 100}{10 * 3.14^{2} * 2.0 * 8050}\right)^{\frac{1}{4}}=\left(5.67 * 10^{-4}\right)^{\frac{1}{4}}=0.154 m
$$

Hence the diameter of the shaft $=2 R=2 * 0.154=0.308 \mathrm{~m}=30.8 \mathrm{~cm}$

