Q- Two charges $q=-2 \mu \mathrm{C}$ and $Q=+4 \mu \mathrm{C}$ are placed at a distance $d=12 \mathrm{~cm}$. Find position of a point along the line joining the charges where the electric field is zero.
Let the field is zero at $\mathrm{x}=\mathrm{x}_{\mathrm{o}}$. Magnitude of the field at $\mathrm{x}=\mathrm{x}_{0}$ due to the charge at origin will be

$$
\mathrm{E}_{1}=\frac{-q}{4 \pi \epsilon_{0}\left(x_{0}\right)^{2}}
$$

Field at that point due to charge Q will be

$$
\mathrm{E}_{2}=\frac{Q}{4 \pi \in_{0}\left(x_{0}-d\right)^{2}}
$$

Hence the resultant field will be zero if
Or $\begin{aligned} & \mathrm{E}_{1}+\mathrm{E}_{2}=0 \\ & \frac{-q}{4 \pi \in_{0}\left(x_{0}\right)^{2}}+\frac{Q}{4 \pi \in_{0}\left(x_{0}-d\right)^{2}}=0\end{aligned}$
Or $\frac{Q}{\left(x_{0}-d\right)^{2}}=\frac{q}{x_{0}{ }^{2}}$
Gives $\frac{\left(x_{0}-d\right)^{2}}{x_{0}{ }^{2}}=\frac{Q}{q}$
Or $\quad \frac{\left(x_{0}-d\right)}{x_{0}}= \pm \sqrt{\frac{Q}{q}}$
Or $\quad 1-\frac{d}{x_{0}}= \pm \sqrt{\frac{Q}{q}}$
Or $\quad 1-\frac{0.12}{x_{0}}= \pm \sqrt{2}$
Or $1 \pm \sqrt{2}=\frac{0.12}{x_{0}}$
Gives $\quad x_{0}=\frac{0.12}{1 \pm \sqrt{2}}=0.05 \mathrm{~m}$ and -0.29 m
Or $\quad x_{0}=5 \mathrm{~cm}$ and -29 cm
As at 5 cm the field due to both charges is in same direction, this is not valid answer and hence the correct answer will be -29 cm .
$x_{0}=-29 \mathrm{~cm}$.

