Q-A Particle M executes simple harmonic motion along x axis. The reference particle for this SHM moves on a circular path of radius $R=40 \mathrm{~cm}$ with a constant speed of $80 \mathrm{~cm} / \mathrm{s}$.
(a) Find the angular frequency, frequency and the time period for this SHM.
(b) If at $t=0$, the reference particle makes an angle 60° with $+x$ axis, write equation of motion for it.
(a) The linear speed of the reference particle is $v=$ $80 \mathrm{~cm} / \mathrm{s}=0.8 \mathrm{~m} / \mathrm{s}$ and the radius is $\mathrm{R}=40 \mathrm{~cm}=0.4$ m , hence the angular frequency is given by
$\omega=v / R=0.8 / 0.4=2 \mathrm{rad} / \mathrm{s}$.
The frequency is given by

$$
n=\omega /(2 \pi)=1 / \pi=0.318 \mathrm{~Hz}
$$

and the time-period is inverse of the frequency hence given by

$$
\mathrm{T}=1 / \mathrm{n}=\pi=3.14 \mathrm{~s}
$$

(b)

For the particle M to be at equilibrium position $x=0$ at $t=0$ and moving in $+x$ direction the reference particle should be at the lower most point at $t=0$.

And the equation in that situation will be

$$
X=A \sin \omega t
$$

But here at $\mathrm{t}=0$, the reference particle is at point A and the phase angle corresponding to this is $90^{\circ}+60^{\circ}=150^{\circ}$ which will be the initial phase ϕ_{0} and hence the equation for the motion of the x component is given by

$$
X=A \sin (\omega t+\phi 0)
$$

Or $\quad x=(0.4 \mathrm{~m}) \sin \left[(2 \mathrm{rad} / \mathrm{s}) t+150^{\circ}\right]$
Or $\quad x=(0.4 \mathrm{~m}) \cos \left[(2 \mathrm{rad} / \mathrm{s}) \mathrm{t}+60^{\circ}\right]$

Or $\quad x=(0.4 \mathrm{~m}) \cos [(2 \mathrm{rad} / \mathrm{s}) \mathrm{t}+\pi / 3]$

