Q- Three charges are fixed in place as shown. The squares in the grid have sides of length s $=0.24 \mathrm{~m}$. The magnitude of q is $3 \mu \mathrm{C}$, while the magnitude of Q is $4.5 \mu \mathrm{C}$. What is the magnitude of the net force on q due to the other two charges?

Magnitude of force of attraction on +q due to -Q charge will be given by

$$
F_{1}=\frac{Q q}{4 \pi \epsilon_{0}(2 s)^{2}}=\frac{9 * 10^{9} * 4.5 * 10^{-6} * 3 * 10^{-6}}{(2 * 0.24)^{2}}=0.527 \mathrm{~N}
$$

Magnitude of force of repulsion on $+q$ due to Q charge will be given by

$$
F_{1}=\frac{Q q}{4 \pi \in_{0}(2 \sqrt{2} * s)^{2}}=\frac{9 * 10^{9} * 4.5 * 10^{-6} * 3 * 10^{-6}}{(2 \sqrt{2} * 0.24)^{2}}=0.264 \mathrm{~N}
$$

The two forces are at an angle 135°, hence their resultant force will be given by

$$
F=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos 135^{0}}=\sqrt{0.527^{2}+0.264^{2}+2 * 0.527 * 0.264(-0.707)}
$$

Gives $F=0.388 \mathrm{~N}$

