Q- A charged particle with initial velocity $v_{0}=3 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in the positive x-direction enters a region of depth $d_{1}=1.1 \mathrm{~m}$ that has a uniform magnetic field $B=0.011 \mathrm{~T}$ in the positive z direction (out of the page). The magnetic field is zero elsewhere. The particle leaves the magnetic field region with a velocity vector at an angle $\theta=12^{\circ}$ with respect to the x-axis.
(a) What is the magnitude v_{0} ' of the particle's velocity when it exits the magnetic field region?

As the magnetic force on a moving charge particle is always perpendicular to the direction of motion, the kinetic energy and hence the magnitude of velocity does not change and hence

$$
v_{0}{ }^{\prime}=v_{0}=3 * 10^{6} \mathrm{~m} / \mathrm{s}
$$

(b) What is the radius of curvature R of the particle's trajectory when in the region of the magnetic field?

From the geometry of the diagram the radius of curvature of the path R is given by

$$
R \sin \theta=d_{1}
$$

Or $\quad R=d_{1} / \sin \theta=1.1 / \sin 12^{\circ}=5.29 \mathrm{~m}$

$$
R=5.29 \mathrm{~m}
$$

(c) Calculate the ratio q / m of the charge to the mass of the particle. Be sure to include the correct algebraic sign in your answer.

The force on a moving charge particle in a magnetic field which behaves as centripetal force is given by

$$
\mathrm{Bq} \mathrm{v}=\mathrm{mv}^{2} / \mathrm{R}
$$

Gives $\mathrm{q} / \mathrm{m}=\mathrm{v} / \mathrm{BR}=3^{*} 10^{6} /\left(0.011^{*} 5.29\right)=5.16 * 10^{7} \mathrm{C} / \mathrm{Kg}$
As using Fleming's left hand rule, the direction of the force on a positive charge in above situation should be to the negative y direction but the force here is in positive y direction, hence the charge on the particle must be negative and thus

$$
q / m=-5.16 * 10^{7} \mathrm{C} / \mathrm{kg}
$$

(d) Calculate the displacement d_{2} in the y-direction of the particle from its original trajectory at the point where the particle exits the magnetic field region.

The displacement d_{2} in y direction is given by

$$
\begin{aligned}
& d_{2}=R-R \cos \theta=R(1-\cos \theta)=5.29\left(1-\cos 12^{\circ}\right)=0.116 \mathrm{~m} \\
& d_{2}=0.116 \mathrm{~m}
\end{aligned}
$$

