Q- Q- Figure shows a snapshot graph of a wave traveling to the right along a string at 55 m / s. Each interval on the vertical axis corresponds to 0.5 cm . At this instant, what is the velocity of points 1,2 , and 3 on the string?

From the figure
The amplitude of the wave is

$$
\mathrm{A}=0.5 \mathrm{~cm}=0.005 \mathrm{~m}
$$

The wave length

$$
\lambda=30 \mathrm{~cm}=0.30 \mathrm{~m}
$$

Thus, the frequency of the wave will be

$$
\mathrm{n}=\mathrm{v} / \lambda=55 / 0.30=183.33 \mathrm{~Hz}
$$

and the angular frequency

$$
\omega=2 \pi \mathrm{n}=366.67 \pi \mathrm{rad} / \mathrm{s}
$$

As in a wave motion all particles of the medium are executing simple harmonic motion and at equilibrium their speed is maximum and given by

$$
V_{\max }=A \omega
$$

Thus, the speed of points 1 and 3 is maximum at this instant and is given by

$$
V_{\max }=A \omega=0.005 * 366.67 \pi=5.76 \mathrm{~m} / \mathrm{s}
$$

As the wave move forward point 1 will come down (creating trough) hence its velocity will be negative or $\mathrm{v}_{1}=-5.76 \mathrm{~m} / \mathrm{s}$ while point 3 will go up (creating crest) and its velocity $\mathrm{v}_{3}=+5.76$ m / s.

As at this instant particle 2 is at maximum displacement position its velocity will be zero.

