Q- Calculate the acceleration due to gravity at a height of 8.848 km from surface of the earth.
The magnitude of force of gravity on a body of mass m at distance r from the center of earth is given by Newton's law of universal gravitation as

$$
F=\frac{G M m}{r^{2}}
$$

Hence the force on the body at height h from the surface of the earth is given by

$$
F=\frac{G M m}{(R+h)^{2}}
$$

And hence the acceleration due to gravity at height h from the surface of earth is given by

$$
\begin{aligned}
g_{h} & =\frac{F}{m}=\frac{G M}{(R+h)^{2}}=\frac{g R^{2}}{(R+h)^{2}}=g\left(\frac{R}{R+h}\right)^{2} \\
\text { Or } \quad g_{h} & =g\left(\frac{R}{R+h}\right)^{2}=9.8\left(\frac{6.4 * 10^{6}}{6.4 * 10^{6}+8848}\right)^{2}=9.773 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

