Q- A torque of $50 \mathrm{~N} . \mathrm{m}$ accelerates a wheel from rest to $100 \mathrm{rev} / \mathrm{min}$ in 5 seconds.
(a) What is the angular displacement of the wheel in 5 second?
(b) What is the angular acceleration of the wheel?
(c) What is the moment of inertia of the wheel?

Corresponding to the second law of motion $\mathrm{F}=$ ma the equation of rotational motion is given by

$$
\tau=I \alpha
$$

Here τ is the torque and I is the moment of inertia of the body.
Here

$$
\begin{aligned}
& \tau=50 \mathrm{~N} . \mathrm{m} \\
& \mathrm{t}=5 \mathrm{~s} \\
& \omega=100 \mathrm{rev} / \mathrm{min}=100 * 2 \pi / 60 \mathrm{rad} / \mathrm{s}=10 \pi / 3 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

(a)

As the angular acceleration of the wheel is constant
Angular displacement $=$ average angular velocity* time
Or $\quad \theta=\left(\frac{\omega_{0}+\omega}{2}\right) * t$
Or $\quad \theta=\left(\frac{0+10 \pi / 3}{2}\right) * 5$
Or $\quad \theta=\left(\frac{5 \pi}{3}\right) * 5=\frac{25 \pi}{3} \mathrm{rad}=26.18 \mathrm{rad}$
(b)

Using first equation of rotational motion we have

$$
\begin{gathered}
\omega=\omega_{0}+\alpha t \\
\text { Or } \quad 10 \pi / 3=0+\alpha^{*} 5
\end{gathered}
$$

Gives $\alpha=2 \pi / 3 \mathrm{rad} / \mathrm{s}^{2}=2.09 \mathrm{rad} / \mathrm{s}^{2}$
(c)

The moment of inertia of the wheel is given by

$$
I=\frac{\tau}{\alpha}=\frac{50}{2.09}=23.87 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

