Q- A 78 cm long guitar string with a linear density of $1.0 \mathrm{~g} / \mathrm{m}$ is under 225 N tension. It is plucked and vibrates at its fundamental frequency. What is the wavelength of the sound wave that reaches your ear in a $20^{\circ} \mathrm{C}$ room?

When the string vibrates in its fundamental frequency the two ends of the string are consecutive nodes (no vibration) and hence the length of the string is $\lambda / 2$ gives the wavelength

$$
\lambda=2 * \text { length of the string }=2 L=2 * 78=156 \mathrm{~cm} .
$$

The wave velocity con a stretched string is given by

$$
c=\sqrt{\frac{T}{\mu}}
$$

where t is the tension in the string and μ is the mass per unit length.
Hence according to the relation $\mathrm{c}=\mathrm{n} \lambda$ the frequency of the fundamental frequency is given by

$$
n=\frac{c}{\lambda}=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}=\frac{1}{2 * 0.78} \sqrt{\frac{225}{1.0 * 10^{-3}}}=304 \mathrm{~Hz}
$$

Now the frequency of the sound wave produced in the air will be same as that of the string and if the speed of sound in air (at $20^{\circ} \mathrm{C}$) is $\mathrm{c}^{\prime}(=344 \mathrm{~m} / \mathrm{s})$ then the wavelength of the sound produced in air is given by

$$
\lambda^{\prime}=\frac{c^{\prime}}{n}=\frac{344}{304}=1.13 \mathrm{~m} .
$$

