QQ- In the circuit bellow
(a) Find the equivalent resistance of the circuit.
(b) Find the currents I_{1} and I_{2}.

(a) The three resistances between CD, DE and EF are in series (the same current through them) and their equivalent resultant will be $2+2+2=6 \Omega$.

This combination is in parallel with resistance 3Ω between CF and thus the resultant resistance between C and F will be given by

$$
R_{C F}=\frac{3 * 6}{3+6}=2 \Omega
$$

Thus, the circuit will reduce to the circuit given in the figure Now again in the same way the three resistances between $B C, C F$ and $F G$ are in series and their equivalent resultant will be $2+2+2=6 \Omega$.

This combination is in parallel with resistance 3Ω between BG and thus the resultant resistance between B and G will
 be given by

$$
R_{B G}=\frac{3 * 6}{3+6}=2 \Omega
$$

Thus, the circuit will reduce to the three resistances of 2Ω each in series with the cell and the equivalent resistance is given by

$$
R_{\text {eq }}=2+2+2=6 \Omega
$$

b) Here I_{1} is the total current through the circuit and as the emf of the cell is 12 V and the equivalent resistance of the circuit is 6 Ohm the current is given by Ohm's law as

$$
\mathrm{I}_{1}=\mathrm{V} / \mathrm{R}_{\mathrm{eq}}=12 / 6=2 \mathrm{~A}
$$

Now as the current I_{1} is distributed to two branches at B or resistances 6Ω and 3Ω, if the potential difference between B and G is V^{\prime} then using Ohms law again we get

$$
\begin{array}{ll}
& \mathrm{V}^{\prime}=\mathrm{I}_{2} * 6=\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right) * 3 \\
\text { Gives } & \mathrm{I}_{2} * 6=3 \mathrm{I}_{1}-3 \mathrm{I}_{2} \\
\text { Or } & 9 \mathrm{I}_{2}=3 \mathrm{I}_{1} \\
\text { Or } & \mathrm{I}_{2}=\mathrm{I}_{1} / 3=2 / 3=0.667 \mathrm{~A}
\end{array}
$$

