Q- Two polarizing sheets have their transmission axes crossed so that no light gets through. A third sheet is inserted between the first two such that its transmission axis makes an angle θ with that of the first sheet. Unpolarized light of intensity I_{0} is incident on the first sheet. Find the intensity of the light transmitted through all three sheets for
(a) $\theta=45^{\circ}$
(b) $\theta=30^{\circ}$

When the two sheets are not allowing light the angle between their axes is 90°. Hence when the axis of the third sheet is making angle Θ with the first the angle between the axes of second and third will be $90^{\circ}-\Theta$

Now the intensity of the un polarized light incident on the first sheet is I_{0} then half of the light is emerging from it as light polarized along its axis and hence the intensity becomes

$$
\mathrm{I}_{1}=\mathrm{I}_{0} / 2
$$

When this linearly polarized light passes through the second sheet its intensity is given by Malus law as

$$
I_{2}=\left(I_{0} / 2\right) \cos ^{2} \theta
$$

Now this light is again passes through the third sheet whose axis is making an angle $90-\Theta$ hence using Malus law again the intensity of the transmitted beam is given by

$$
I_{3}=I_{1} * \cos ^{2}(90-\theta)=\left(I_{0} / 2\right) \cos ^{2} \theta^{*} \sin ^{2} \theta
$$

Thus
(a) $\theta=45^{\circ}$
through first sheet $I_{1}=I_{0} / 2$.
through first two sheets $I_{2}=\left(I_{0} / 2\right) \cos ^{2} \theta=I_{0} / 4$.
through all three sheets $I_{3}=\left(I_{0} / 2\right) \cos ^{2} \Theta * \sin ^{2} \theta=I_{0} / 8$.
(b) $\theta=30^{\circ}$
through first sheet $\mathrm{I}_{1}=\mathrm{I}_{0} / 2$.
through first two sheets $I_{2}=\left(I_{0} / 2\right) \cos ^{2} 30^{\circ}=0.375 I_{0}$.
through all three sheets $I_{3}=\left(I_{0} / 2\right) \cos ^{2} 30^{0} * \sin ^{2} 30^{\circ}=0.094 I_{0}$

